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Bounds on approx. ratio of Adaptive Greedy
Bounds on adaptivity gaps
Influence maximization on bipartite graphs
Adaptive feature selection

Adaptive Stochastic Optimization
A decision maker repeats selecting an element and
observing its state alternately

Select element v ∈ V Observe its state φ(v) ∈ Y

An adaptive policy π determines
the element to be selected next
Goal To find a near-optimal policy

Maximizeπ∈Πk EΦ[f (E(π,Φ),Φ)]
the set of all policies
of height at most k

the subset selected by π
under realization φ

V finite set Y set of possible states
φ : V → Y states p ∈ ∆YV distribution of φ
f : 2V × YV → R≥0 objective function

Adaptive Greedy works well in many applications
even if the objective function lacks adaptive submodularity

[Golovin–Krause’11]
Q Under what condition does Adaptive Greedy work well?

Definition: Adaptive Submodularity Ratio
Adaptive submodularity ratio γℓ,k ∈ [0,1] measures
the distance to adaptive submodular functions

adaptivesubmodularfunctions
γℓ,k = 1 γℓ,k = 0

arbitraryadaptivemonotonefunctions
(1− exp(−γk,k))-approximation

[this study]

submodularfunctions
arbitrarymonotonefunctions(1− exp(−γk,k))-approximation

[Das–Kempe’11]

γℓ,k △= min|ψ|≤ℓ, π∈Πk

∑
v∈V Pr(v ∈ E(π,Φ)|Φ ∼ ψ)∆(v|ψ)

∆(π|ψ)

the probability that v is selected by π
the expected marginal gain of v

the expected marginal gain of π

ψ = {(v1, φ(v1)), · · · , (vℓ, φ(vℓ))} observations obtained so far
∆(v|ψ) = EΦ [f (dom(ψ) ∪ {v},Φ)− f (dom(ψ),Φ) | Φ ∼ ψ]

∆(π|ψ) = EΦ [f (dom(ψ) ∪ E(π,Φ),Φ)− f (dom(ψ),Φ) | Φ ∼ ψ]

Theorem (1): Approximation Ratio
Adaptive Greedy achieves a good approximation
if adaptive submodularity ratio is large

Adaptive Greedy [Golovin–Krause’11]
ψ← ∅ // Initialize
For |ψ| < k:

v∗ ∈ argmax{∆(v|ψ) | v ∈ V} // greedy selection
Observe φ(v∗) // observation of the state
ψ← ψ ∪ {(v∗, φ(v∗))}

Theorem Adaptive Greedy is (1− exp(−γk,k))-approx.

Theorem (2): Bounds on Adaptivity Gaps
An optimal non-adaptive policy is an approximation
to an optimal adaptive policy

GAPk(f ,p) △=
maxS∗ : |S∗|≤kEΦ[f (S∗,Φ)]

max
π∗∈Πk

EΦ[f (E(π∗,Φ),Φ)] ∈ [0,1]
the value achieved by an optimal non-adaptive policy

the value achieved by an optimal adaptive policy

Theorem GAPk(f ,p) ≥ β0,kγ0,k

β0,k △= minS⊆V : |S|≤k
E[f (S,Φ)]∑

v∈S E[f ({v},Φ)]
supermodularity ratioof EΦ[f (·,Φ)]

Application (1): Influence Maximization
Select a subset of ads to influence many people

Non-adaptive setting

Adaptive setting
Select a subset in advance

Select ads one by one

Theorem γℓ,k ≥ k + 1
2k under the triggering model

Application (2): Adaptive Feature Selection
Select a subset of features to be observed precisely

y ≈ A(Φ) w
Non-adaptive setting

Adaptive setting
Select a subset in advance

Observe features one by one

Theorem γℓ,k ≥min
φ

minS⊆V : |S|≤ℓ+kλmin(A(φ)⊤S A(φ)S)


