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Our Contributions Definition: Adaptive Submodularity Ratio Theorem (2): Bounds on Adaptivity Gaps

Adaptive Submodularity Ratio is applied to Adaptive submodularity ratio y; x € |0, 1] measures An optimal non-adaptive policy is an approximation

the distance to adaptive submodular functions to an optimal adaptive policy
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Theorem (1): Approximation Ratio
the set of all policies the subset selected by
Adaptive Greedy achieves a good approximation
if adaptive submodularity ratio is large Application (2): Adaptive Feature Selection

V finite set ) set of possible states Adaptive Greedy [Golovin-Krause'11] Select a subset of features to be observed precisely
¢:V — ) states p € Ayv distribution of ¢ Y — @ // Initialize B B
f: 2" x ¥ — Rxo objective function For |¢] < k: Select a subset in advance
v* € argmax{A(v|¢) |v eV} // greedy selection y| =~ A(P
Adaptive Greedy works well in many applications Observe ¢(v*) // observation of the state
even if the objective function lacks adaptive submodularity p—ygu{(v®, o(v7))} N Observe features one by one
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ﬂ Under what condition does Adaptive Greedy work well?



