Discrete Methods in Informatics October 3, 2005

Lecture 1 (Edge-Coloring)

Lecturer: Satoru Iwata Scribe: Yusuke Kobayashi, Kenjiro Takazawa

In this course, we will cover some topics in combinatorial optimization. The textbook is [3].

1 Edge-Coloring

Let G = (V, E) be an undirected graph. An edge-coloring of G is coloring every edge so that every pair
of adjacent edges have different colors. In other words, a set of edges in the same color corresponds to
a matching. We consider to find an edge-coloring with the minimum number of colors, which we call a
minimum edge-coloring.

Let v be the minimum number of colors, and d(v) be the degree of v € V. Then, we have v >
d(v), Yv € V. In other words, v > d* holds, where d* = max{d(v) | v € V'}. This inequality gives rise to
the question of whether the equality v = d* holds or not. In fact, this equality does not always hold. For
example, v = 3, and d* = 2 in Fig. 1.

Figure 1: A counterexample to v = d*.

In bipartite graphs, however, it is known that the equality holds.
Theorem 1 (Kénig, 1916). If G is bipartite, then v = d*.

Proof. Let My, Ms, ..., Mg be disjoint matchings whose total number of edges are maximum. If an
edge e belongs to M;, we say that e is colored in i. It is enough to show that £ = M; U Ma U --- U My-.

Assume that there exists an edge e = (u,v) in E'\ (M; UMy U---U My-). Since there exist at most
d* — 1 edges incident to u except e, there is a color ¢ in 1,2,...,d* such that no edge incident to u is
colored in i. Similarly, there is a color j such that no edge incident to v is colored in j.

e Suppose i = j. Then, we can color e in i, which contradicts the maximality of |M;UMaU- - -U Mg«|.

e Suppose i # j. Let G’ be a subgraph of G whose edge set is M; U M; U {e}. In G’, since the degree
of each vertex is at most 2, each component is a path or a cycle.

— Assume that e is contained in a cycle C. In C, the edges in M; and M; alternately lie, and
one of the adjacent edges to e is in M;, the other in M;. Hence, the cycle C' is odd, which
contradicts that G is bipartite.

— Assume e is contained in a path P. Then, we can change M; and M; so that they cover all
edges in P, which contradicts the maximality of [M; U My U --- U Mg«|.

O]

This proof implies that we can find an edge-coloring with d* colors in O(nm) time, where n and m
denote the number of vertices and edges, respectively. There are some more efficient algorithms for the
problem such as Schrijver’s algorithm in O(md*) time [2] and the algorithm in O(mlogd*) time by Cole,
Ost, and Schirra [1].

2 Algorithms

In this section, we describe Schrijver’s algorithm to find a minimum edge-coloring in a bipartite graph.
We say that a graph is k-regular if the degree of every vertex is k. The algorithm is based on the
following proposition.

Proposition 2 (Hall’s theorem). Any k-regular bipartite graph has a perfect matching.

Proof. In a k-regular bipartite graph G, Theorem 1 tells us that there exists a set of disjoint match-
ings My, ..., My which cover all edges. Then Vv € V', d(v) = k means that v is incident to an edge in M;
for all ¢ (1 <1 < k), which implies that M; is a perfect matching. O

Given any bipartite graph G = (U, V; E'), we can construct a d*-regular bipartite graph G* as follows:

1. While there are more than one vertices in U (resp. V') whose degree is at most d*/2, contract two
of them so that no more than one such vertex exists in U (resp. V).

2. Add some dummy vertices and edges so that the obtained graph is d*-regular (multiple edges are
allowed).

If we can find a minimum edge-coloring in G*, then we can also find that in G.

Here we describe an algorithm to find a minimum edge-coloring of a d*-regular bipartite graph. A
simple method consists of the iterations of finding a perfect matching and removing it. This method
is, however, not efficient. To find an minimum edge-coloring more efficiently, we consider the following
divide and conquer method:

1. When d* is odd, reduce the problem to that in a (d* — 1)-regular graph by removing a perfect
matching.

2. When d* is even, find an Euler cycle. Then, take every other edge along the Euler cycle to obtain
two (d*/2)-regular subgraphs, and reduce the problem to those in the two (d*/2)-regular graphs.

In this algorithm, it is important to find a perfect matching in a k-regular bipartite graph efficiently.

The following algorithm by Schrijver [2] finds a perfect matching in a k-regular bipartite graph in
O(mk) time. We can find a minimum edge-coloring of a d*-regular bipartite graph in O(md*) time using
Algorithm 3.

Algorithm 3. Initialization: w(e) :=1, Ve € E.

Iteration: Let E* = {e € E | w(e) > 0}. If a cycle C exists in E*, then divide the edges in C into two
matchings M, N such that w(M) > w(N), and update w as

wle) = w(e) +1 (for e e M),
a w(e) —1 (for e € N).

Theorem 4. Algorithm 3 finds a perfect matching in a k-reqular bipartite graph in O(mk) time.

Proof. Firstly, we show that E* is a perfect matching when the algorithm terminates. The sum of the
weight w of the edges incident to each vertex is k in the initialization, and is not changed in the algorithm.
Note that each weight is always nonnegative.

When the algorithm terminates, the subgraph whose edge set is £* is a forest. Assume v is a leaf of
the forest (i.e. a single edge e = (u,v) is incident to v). Then w(e) = k and so u has no incident edges in
E* except e, which implies £* is a matching. Since each edge has at least one incident edge in E*, E* is
a perfect matching.

Next we consider the complexity of the algorithm. In each iteration, the value > .5 w(e)? increases
by

Y ((wle) +1)* —w(e)®) + Y ((w(e) = 1) = w(e)’) = 2w(M) + [M| = 2w(N) +|N| = |C].
ecM eeN

The value) .5 w(e)? is equal to m in the initialization, and mk in the end of the algorithm. We require
O(|C|) time to find a cycle C, and update w. Hence the algorithm runs in O(mk) time. O

References

[1] R. Cole, K. Ost, S. Schirra: Edge coloring bipartite multigraphs in O(E log D) time, Combinatorica,
21 (2001), pp. 5-12.

[2] A. Schrijver: Bipartite edge coloring in O(Am) time, SIAM Journal on Computing, 28 (1998), pp. 841—
846.

[3] A. Schrijver: Combinatorial Optimization. Springer-Verlag, 2003.

