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In this course, we will cover some topics in combinatorial optimization. The textbook is [3].

1 Edge-Coloring

Let G = (V,E) be an undirected graph. An edge-coloring of G is coloring every edge so that every pair
of adjacent edges have different colors. In other words, a set of edges in the same color corresponds to
a matching. We consider to find an edge-coloring with the minimum number of colors, which we call a
minimum edge-coloring.

Let γ be the minimum number of colors, and d(v) be the degree of v ∈ V . Then, we have γ ≥
d(v), ∀v ∈ V . In other words, γ ≥ d∗ holds, where d∗ = max{d(v) | v ∈ V }. This inequality gives rise to
the question of whether the equality γ = d∗ holds or not. In fact, this equality does not always hold. For
example, γ = 3, and d∗ = 2 in Fig. 1.

Figure 1: A counterexample to γ = d∗.

In bipartite graphs, however, it is known that the equality holds.

Theorem 1 (Kőnig, 1916). If G is bipartite, then γ = d∗.

Proof. Let M1, M2, . . . ,Md∗ be disjoint matchings whose total number of edges are maximum. If an
edge e belongs to Mi, we say that e is colored in i. It is enough to show that E = M1 ∪ M2 ∪ · · · ∪ Md∗ .

Assume that there exists an edge e = (u, v) in E \ (M1 ∪ M2 ∪ · · · ∪ Md∗). Since there exist at most
d∗ − 1 edges incident to u except e, there is a color i in 1, 2, . . . , d∗ such that no edge incident to u is
colored in i. Similarly, there is a color j such that no edge incident to v is colored in j.

• Suppose i = j. Then, we can color e in i, which contradicts the maximality of |M1∪M2∪· · ·∪Md∗ |.

• Suppose i 6= j. Let G′ be a subgraph of G whose edge set is Mi ∪Mj ∪ {e}. In G′, since the degree
of each vertex is at most 2, each component is a path or a cycle.

– Assume that e is contained in a cycle C. In C, the edges in Mi and Mj alternately lie, and
one of the adjacent edges to e is in Mi, the other in Mj . Hence, the cycle C is odd, which
contradicts that G is bipartite.

1



– Assume e is contained in a path P . Then, we can change Mi and Mj so that they cover all
edges in P , which contradicts the maximality of |M1 ∪ M2 ∪ · · · ∪ Md∗ |.

This proof implies that we can find an edge-coloring with d∗ colors in O(nm) time, where n and m

denote the number of vertices and edges, respectively. There are some more efficient algorithms for the
problem such as Schrijver’s algorithm in O(md∗) time [2] and the algorithm in O(m log d∗) time by Cole,
Ost, and Schirra [1].

2 Algorithms

In this section, we describe Schrijver’s algorithm to find a minimum edge-coloring in a bipartite graph.
We say that a graph is k-regular if the degree of every vertex is k. The algorithm is based on the

following proposition.

Proposition 2 (Hall’s theorem). Any k-regular bipartite graph has a perfect matching.

Proof. In a k-regular bipartite graph G, Theorem 1 tells us that there exists a set of disjoint match-
ings M1, . . . ,Mk which cover all edges. Then ∀v ∈ V , d(v) = k means that v is incident to an edge in Mi

for all i (1 ≤ i ≤ k), which implies that Mi is a perfect matching.

Given any bipartite graph G = (U, V ; E), we can construct a d∗-regular bipartite graph G∗ as follows:

1. While there are more than one vertices in U (resp. V ) whose degree is at most d∗/2, contract two
of them so that no more than one such vertex exists in U (resp. V ).

2. Add some dummy vertices and edges so that the obtained graph is d∗-regular (multiple edges are
allowed).

If we can find a minimum edge-coloring in G∗, then we can also find that in G.
Here we describe an algorithm to find a minimum edge-coloring of a d∗-regular bipartite graph. A

simple method consists of the iterations of finding a perfect matching and removing it. This method
is, however, not efficient. To find an minimum edge-coloring more efficiently, we consider the following
divide and conquer method:

1. When d∗ is odd, reduce the problem to that in a (d∗ − 1)-regular graph by removing a perfect
matching.

2. When d∗ is even, find an Euler cycle. Then, take every other edge along the Euler cycle to obtain
two (d∗/2)-regular subgraphs, and reduce the problem to those in the two (d∗/2)-regular graphs.

In this algorithm, it is important to find a perfect matching in a k-regular bipartite graph efficiently.
The following algorithm by Schrijver [2] finds a perfect matching in a k-regular bipartite graph in

O(mk) time. We can find a minimum edge-coloring of a d∗-regular bipartite graph in O(md∗) time using
Algorithm 3.

Algorithm 3. Initialization: w(e) := 1, ∀e ∈ E.
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Iteration: Let E∗ = {e ∈ E | w(e) > 0}. If a cycle C exists in E∗, then divide the edges in C into two
matchings M,N such that w(M) ≥ w(N), and update w as

w(e) :=

{
w(e) + 1 (for e ∈ M),

w(e) − 1 (for e ∈ N).

Theorem 4. Algorithm 3 finds a perfect matching in a k-regular bipartite graph in O(mk) time.

Proof. Firstly, we show that E∗ is a perfect matching when the algorithm terminates. The sum of the
weight w of the edges incident to each vertex is k in the initialization, and is not changed in the algorithm.
Note that each weight is always nonnegative.

When the algorithm terminates, the subgraph whose edge set is E∗ is a forest. Assume v is a leaf of
the forest (i.e. a single edge e = (u, v) is incident to v). Then w(e) = k and so u has no incident edges in
E∗ except e, which implies E∗ is a matching. Since each edge has at least one incident edge in E∗, E∗ is
a perfect matching.

Next we consider the complexity of the algorithm. In each iteration, the value
∑

e∈E w(e)2 increases
by ∑

e∈M

((w(e) + 1)2 − w(e)2) +
∑
e∈N

((w(e) − 1)2 − w(e)2) = 2w(M) + |M | − 2w(N) + |N | ≥ |C|.

The value
∑

e∈E w(e)2 is equal to m in the initialization, and mk in the end of the algorithm. We require
O(|C|) time to find a cycle C, and update w. Hence the algorithm runs in O(mk) time.
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