Discrete Methods in Informatics

October 3, 2005

Lecture 1 (Edge-Coloring)

Lecturer: Satoru Iwata Scribe: Yusuke Kobayashi, Kenjiro Takazawa

In this course, we will cover some topics in combinatorial optimization. The textbook is [3].

1 Edge-Coloring

Let G = (V, E) be an undirected graph. An edge-coloring of G is coloring every edge so that every pair of adjacent edges have different colors. In other words, a set of edges in the same color corresponds to a matching. We consider to find an edge-coloring with the minimum number of colors, which we call a minimum edge-coloring.

Let γ be the minimum number of colors, and d(v) be the degree of $v \in V$. Then, we have $\gamma \geq d(v)$, $\forall v \in V$. In other words, $\gamma \geq d^*$ holds, where $d^* = \max\{d(v) \mid v \in V\}$. This inequality gives rise to the question of whether the equality $\gamma = d^*$ holds or not. In fact, this equality does not always hold. For example, $\gamma = 3$, and $d^* = 2$ in Fig. 1.

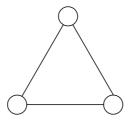


Figure 1: A counterexample to $\gamma = d^*$.

In bipartite graphs, however, it is known that the equality holds.

Theorem 1 (Kőnig, 1916). If G is bipartite, then $\gamma = d^*$.

Proof. Let $M_1, M_2, \ldots, M_{d^*}$ be disjoint matchings whose total number of edges are maximum. If an edge e belongs to M_i , we say that e is colored in i. It is enough to show that $E = M_1 \cup M_2 \cup \cdots \cup M_{d^*}$.

Assume that there exists an edge e = (u, v) in $E \setminus (M_1 \cup M_2 \cup \cdots \cup M_{d^*})$. Since there exist at most $d^* - 1$ edges incident to u except e, there is a color i in $1, 2, \ldots, d^*$ such that no edge incident to u is colored in i. Similarly, there is a color j such that no edge incident to v is colored in j.

- Suppose i=j. Then, we can color e in i, which contradicts the maximality of $|M_1 \cup M_2 \cup \cdots \cup M_{d^*}|$.
- Suppose $i \neq j$. Let G' be a subgraph of G whose edge set is $M_i \cup M_j \cup \{e\}$. In G', since the degree of each vertex is at most 2, each component is a path or a cycle.
 - Assume that e is contained in a cycle C. In C, the edges in M_i and M_j alternately lie, and one of the adjacent edges to e is in M_i , the other in M_j . Hence, the cycle C is odd, which contradicts that G is bipartite.

– Assume e is contained in a path P. Then, we can change M_i and M_j so that they cover all edges in P, which contradicts the maximality of $|M_1 \cup M_2 \cup \cdots \cup M_{d^*}|$.

This proof implies that we can find an edge-coloring with d^* colors in O(nm) time, where n and m denote the number of vertices and edges, respectively. There are some more efficient algorithms for the problem such as Schrijver's algorithm in $O(md^*)$ time [2] and the algorithm in $O(m \log d^*)$ time by Cole, Ost, and Schirra [1].

2 Algorithms

In this section, we describe Schrijver's algorithm to find a minimum edge-coloring in a bipartite graph.

We say that a graph is k-regular if the degree of every vertex is k. The algorithm is based on the following proposition.

Proposition 2 (Hall's theorem). Any k-regular bipartite graph has a perfect matching.

Proof. In a k-regular bipartite graph G, Theorem 1 tells us that there exists a set of disjoint matchings M_1, \ldots, M_k which cover all edges. Then $\forall v \in V, d(v) = k$ means that v is incident to an edge in M_i for all i $(1 \le i \le k)$, which implies that M_i is a perfect matching.

Given any bipartite graph G = (U, V; E), we can construct a d^* -regular bipartite graph G^* as follows:

- 1. While there are more than one vertices in U (resp. V) whose degree is at most $d^*/2$, contract two of them so that no more than one such vertex exists in U (resp. V).
- 2. Add some dummy vertices and edges so that the obtained graph is d^* -regular (multiple edges are allowed).

If we can find a minimum edge-coloring in G^* , then we can also find that in G.

Here we describe an algorithm to find a minimum edge-coloring of a d^* -regular bipartite graph. A simple method consists of the iterations of finding a perfect matching and removing it. This method is, however, not efficient. To find an minimum edge-coloring more efficiently, we consider the following divide and conquer method:

- 1. When d^* is odd, reduce the problem to that in a $(d^* 1)$ -regular graph by removing a perfect matching.
- 2. When d^* is even, find an Euler cycle. Then, take every other edge along the Euler cycle to obtain two $(d^*/2)$ -regular subgraphs, and reduce the problem to those in the two $(d^*/2)$ -regular graphs.

In this algorithm, it is important to find a perfect matching in a k-regular bipartite graph efficiently.

The following algorithm by Schrijver [2] finds a perfect matching in a k-regular bipartite graph in O(mk) time. We can find a minimum edge-coloring of a d^* -regular bipartite graph in $O(md^*)$ time using Algorithm 3.

Algorithm 3. Initialization: $w(e) := 1, \forall e \in E$.

Iteration: Let $E^* = \{e \in E \mid w(e) > 0\}$. If a cycle C exists in E^* , then divide the edges in C into two matchings M, N such that $w(M) \ge w(N)$, and update w as

$$w(e) := \begin{cases} w(e) + 1 & (\text{for } e \in M), \\ w(e) - 1 & (\text{for } e \in N). \end{cases}$$

Theorem 4. Algorithm 3 finds a perfect matching in a k-regular bipartite graph in O(mk) time.

Proof. Firstly, we show that E^* is a perfect matching when the algorithm terminates. The sum of the weight w of the edges incident to each vertex is k in the initialization, and is not changed in the algorithm. Note that each weight is always nonnegative.

When the algorithm terminates, the subgraph whose edge set is E^* is a forest. Assume v is a leaf of the forest (i.e. a single edge e = (u, v) is incident to v). Then w(e) = k and so u has no incident edges in E^* except e, which implies E^* is a matching. Since each edge has at least one incident edge in E^* , E^* is a perfect matching.

Next we consider the complexity of the algorithm. In each iteration, the value $\sum_{e \in E} w(e)^2$ increases by

$$\sum_{e \in M} ((w(e) + 1)^2 - w(e)^2) + \sum_{e \in N} ((w(e) - 1)^2 - w(e)^2) = 2w(M) + |M| - 2w(N) + |N| \ge |C|.$$

The value $\sum_{e \in E} w(e)^2$ is equal to m in the initialization, and mk in the end of the algorithm. We require O(|C|) time to find a cycle C, and update w. Hence the algorithm runs in O(mk) time.

References

- [1] R. Cole, K. Ost, S. Schirra: Edge coloring bipartite multigraphs in $O(E \log D)$ time, Combinatorica, **21** (2001), pp. 5–12.
- [2] A. Schrijver: Bipartite edge coloring in $O(\Delta m)$ time, SIAM Journal on Computing, 28 (1998), pp. 841–846.
- [3] A. Schrijver: Combinatorial Optimization. Springer-Verlag, 2003.