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Lecture 2 (edge-coloring 2)

Lecturer: Satoru Iwata Scribe: Yasunori Horikoshi

In this course, we will cover some topics in combinatorial optimization. The textbook is [2].

1 Edge coloring of simple graph

Edge coloring of undirected graph G = (V, E) is assigning color to each edge e ∈ E so that any two edges
having end-vertex in common have different colors. The minimum number of colors required for an edge
coloring of G is denoted by γ(G).

Edge coloring is a classical problem in graph theory, especially because proving the 4-color theorem
is equivalent to showing the 3-edge-colorability of planar bridgeless cubic graphs.

For any simple graph G, the following inequality is trivial:

∆(G) ≤ γ(G),

where ∆(G) denotes the maximum degree among the vertices.
If G is a bipartite graph, the inequality holds with equality (Lecture 1, Thorem 1). In contrast, there

is a graph G such that ∆(G) < γ(G). Nevertheless, the next theorem has been established.

Theorem 1 (Vizing [3, 4]). For any simple graph G, we have ∆(G) ≤ γ(G) ≤ ∆(G) + 1.

We use the following lemma in the proof taken from [2, §28.1].

Lemma 2. Let G be a simple graph and let v be a vertex such that v and all its neighbours have degree
at most k, while at most one neighbour has degree precisely k. If G− v is k-edge-colorable, then so is G.

Proof. We prove this by induction on k. The case k = 0 is trivial. We may assume that precisely one
neighbour of v has degree k and the others have degree k−1. Because we can add new vertices and edges
so that the condition holds.

Assume that G− v is k-edge-colorable. We define Xi (i = 1, 2, . . . , k) to be the set of neighbours of v

to which color i is not assigned. We now consider a k-edge-coloring of G− v that minimizes
∑k

i=1 |Xi|2.
Then there is a number i (1 ≤ i ≤ k) such that |Xi| = 1. Assume otherwise, and then we have the
following assessment:

k∑

i=1

|Xi| = 2deg(v)− 1 < 2k.

This inequality implies that there are numbers i and j such that |Xi| = 0 and |Xj | ≥ 3. We now define
H to be the subgraph of G− v which consists of all edges colored by i or j. For any vertex s ∈ Xj , the
connected component of H containing s must be a path. We can interchange the colors of the edges along
the path, which makes |Xi|2 + |Xj |2 smaller. This contradicts to the choice of the k-edge-coloring.

Thus, we can assume Xk = {u} without loss of generality. Let G′ be the subgraph of G obtained by
deleting the edge uv and the edges of color k. Then G′ − v is (k − 1)-edge-colorable. In G′, degrees of
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v and its neighbours are less than or equal to k − 1 and at most one neighbour has degree k − 1. So
G′ is (k − 1)-edge-colorable by the inductive assumption. Then, putting back the edges we deleted and
assigning color k to the edge uv, we have k-edge-coloring of G.

Now we prove the theorem.

Proof of Theorem 1. Let k = ∆(G) + 1. Then, any vertex of G satisfies the condition of Lemma 2. Thus
we can eliminate edges from G one by one until only one edge is left. Then the resulting graph is of course
k-edge-colorable. Inductive applications of Lemma 2 accomplish the proof.

The proof gives an algorithm for finding a (∆(G) + 1)-edge-coloring in O(∆n2) time, where n is the
number of vertices. Merging the vertices of degree less than ∆(G)/2, we have ∆n = O(m), where m is
the number of edges. This implies that the algorithm runs in O(nm) time.

2 Coloring of complete graph

We have seen that for any simple graph G either γ(G) = ∆(G) or γ(G) = ∆(G) + 1 holds. It is known
that determining whether γ(G) = ∆(G) holds or not is NP-complete [1]. For some specific classes of
graphs, however, we are able to determine γ(G). For example, we have the following theorem on the
complete graphs.

Theorem 3. Let Kn be a complete graph of n vertices, then

γ(Kn) =

{
n− 1 (n : even)
n (n : odd)

holds.

Proof. First, we show that γ(Kn) ≤ n holds for any n. Let V = {v0, v1, v2, . . . , vn−1} be vertex set of Kn.
Then assigning color i + j (modn) to edge vivj gives an edge coloring.

Next, we show that γ(Kn) > n− 1 holds for any odd n. If Kn is (n− 1)-edge-colorable then there are
matchings {Mi}n−2

i=0 such that Mi∩Mj = ∅ (i 6= j) and E = M0∪M1∪ . . .∪Mn−2. Since |Mi| ≤ (n−1)/2,
we have |E| = ∑ |Mi| ≤ (n− 1)2/2, which contradicts to |E| = n(n− 1)/2 > (n− 1)2/2.

Finally, we show that γ(Kn) = n − 1 for any even n. The subgraph Kn − vn is (n − 1)-edge-
colorable by the above method. Then the color which is not assigned to vi is 2i (modn − 1). For each
i ∈ {0, 1, 2, . . . , n − 2} let wi := 2i (modn − 1). Since n − 1 is odd, we have i 6= j ⇒ wi 6= wj . Thus,
assigning wi to edge vivn−1 (i = 0, 1, 2, . . . , n− 2), we obtain an (n− 1)-edge-coloring of Kn.
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