Discrete Methods in Informatics

October 17, 2005

Lecture 2 (edge-coloring 2)

Lecturer: Satoru Iwata Scribe: Yasunori Horikoshi

In this course, we will cover some topics in combinatorial optimization. The textbook is [2].

1 Edge coloring of simple graph

Edge coloring of undirected graph G = (V, E) is assigning color to each edge $e \in E$ so that any two edges having end-vertex in common have different colors. The minimum number of colors required for an edge coloring of G is denoted by $\gamma(G)$.

Edge coloring is a classical problem in graph theory, especially because proving the 4-color theorem is equivalent to showing the 3-edge-colorability of planar bridgeless cubic graphs.

For any simple graph G, the following inequality is trivial:

$$\Delta(G) \le \gamma(G)$$
,

where $\Delta(G)$ denotes the maximum degree among the vertices.

If G is a bipartite graph, the inequality holds with equality (Lecture 1, Thorem 1). In contrast, there is a graph G such that $\Delta(G) < \gamma(G)$. Nevertheless, the next theorem has been established.

Theorem 1 (Vizing [3, 4]). For any simple graph G, we have $\Delta(G) \leq \gamma(G) \leq \Delta(G) + 1$.

We use the following lemma in the proof taken from [2, §28.1].

Lemma 2. Let G be a simple graph and let v be a vertex such that v and all its neighbours have degree at most k, while at most one neighbour has degree precisely k. If G - v is k-edge-colorable, then so is G.

Proof. We prove this by induction on k. The case k=0 is trivial. We may assume that precisely one neighbour of v has degree k and the others have degree k-1. Because we can add new vertices and edges so that the condition holds.

Assume that G-v is k-edge-colorable. We define X_i $(i=1,2,\ldots,k)$ to be the set of neighbours of v to which color i is not assigned. We now consider a k-edge-coloring of G-v that minimizes $\sum_{i=1}^{k} |X_i|^2$. Then there is a number i $(1 \leq i \leq k)$ such that $|X_i| = 1$. Assume otherwise, and then we have the following assessment:

$$\sum_{i=1}^{k} |X_i| = 2\deg(v) - 1 < 2k.$$

This inequality implies that there are numbers i and j such that $|X_i| = 0$ and $|X_j| \ge 3$. We now define H to be the subgraph of G - v which consists of all edges colored by i or j. For any vertex $s \in X_j$, the connected component of H containing s must be a path. We can interchange the colors of the edges along the path, which makes $|X_i|^2 + |X_j|^2$ smaller. This contradicts to the choice of the k-edge-coloring.

Thus, we can assume $X_k = \{u\}$ without loss of generality. Let G' be the subgraph of G obtained by deleting the edge uv and the edges of color k. Then G' - v is (k-1)-edge-colorable. In G', degrees of

v and its neighbours are less than or equal to k-1 and at most one neighbour has degree k-1. So G' is (k-1)-edge-colorable by the inductive assumption. Then, putting back the edges we deleted and assigning color k to the edge uv, we have k-edge-coloring of G.

Now we prove the theorem.

Proof of Theorem 1. Let $k = \Delta(G) + 1$. Then, any vertex of G satisfies the condition of Lemma 2. Thus we can eliminate edges from G one by one until only one edge is left. Then the resulting graph is of course k-edge-colorable. Inductive applications of Lemma 2 accomplish the proof.

The proof gives an algorithm for finding a $(\Delta(G) + 1)$ -edge-coloring in $O(\Delta n^2)$ time, where n is the number of vertices. Merging the vertices of degree less than $\Delta(G)/2$, we have $\Delta n = O(m)$, where m is the number of edges. This implies that the algorithm runs in O(nm) time.

2 Coloring of complete graph

We have seen that for any simple graph G either $\gamma(G) = \Delta(G)$ or $\gamma(G) = \Delta(G) + 1$ holds. It is known that determining whether $\gamma(G) = \Delta(G)$ holds or not is NP-complete [1]. For some specific classes of graphs, however, we are able to determine $\gamma(G)$. For example, we have the following theorem on the complete graphs.

Theorem 3. Let K_n be a complete graph of n vertices, then

$$\gamma(K_n) = \begin{cases} n-1 & (n : \text{even}) \\ n & (n : \text{odd}) \end{cases}$$

holds.

Proof. First, we show that $\gamma(K_n) \leq n$ holds for any n. Let $V = \{v_0, v_1, v_2, \dots, v_{n-1}\}$ be vertex set of K_n . Then assigning color $i + j \pmod{n}$ to edge $v_i v_j$ gives an edge coloring.

Next, we show that $\gamma(K_n) > n-1$ holds for any odd n. If K_n is (n-1)-edge-colorable then there are matchings $\{M_i\}_{i=0}^{n-2}$ such that $M_i \cap M_j = \emptyset$ $(i \neq j)$ and $E = M_0 \cup M_1 \cup \ldots \cup M_{n-2}$. Since $|M_i| \leq (n-1)/2$, we have $|E| = \sum |M_i| \leq (n-1)^2/2$, which contradicts to $|E| = n(n-1)/2 > (n-1)^2/2$.

Finally, we show that $\gamma(K_n) = n-1$ for any even n. The subgraph $K_n - v_n$ is (n-1)-edge-colorable by the above method. Then the color which is not assigned to v_i is $2i \pmod{n-1}$. For each $i \in \{0, 1, 2, \ldots, n-2\}$ let $w_i := 2i \pmod{n-1}$. Since n-1 is odd, we have $i \neq j \Rightarrow w_i \neq w_j$. Thus, assigning w_i to edge $v_i v_{n-1}$ ($i = 0, 1, 2, \ldots, n-2$), we obtain an (n-1)-edge-coloring of K_n .

References

- [1] I. Holyer: The NP-completeness of edge-coloring, SIAM Journal on Computing 10 (1981), 718–720.
- [2] A. Schrijver: Combinatorial Optimization, Springer-Verlag, 2003.
- [3] V. G. Vizing: Ob otsenke khromaticheskogo klassa p-grafa [Russian; On an estimate of the chromatic class of a p-graph], Diskretnyi Analiz 3 (1964), 25–30.

[4] V. G. Vizing: Khromaticheskii klass mul'tigrafa [Russian], *Kibernetika* 1965:3 (1965), 29–39 [English translation: The chromatic class of a multi graph, *Cybernetics* 1:3 (1965), 32–41].