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1 Matroid

In 1935, Whitney introduced the notion of matroid for the sake of a combinatorial abstraction of matrices
with respect to linear independence. It is named after “matrix” and “-oid.”

First, we consider a matrix Q over a field K with the row set R and the column set E. Let us denote
by Q[X,Y ] the submatrix of Q determined by X ⊆ R and Y ⊆ E. A subset family I ⊆ 2E defined by

(1) I = {J | J ⊆ E, rankQ[R, J ] = |J |}

satisfies the following (I0)–(I2):

(I0) ∅ ∈ I,

(I1) I ⊆ J ∈ I ⇒ I ∈ I,

(I2) I, J ∈ I, |I| < |J | ⇒ ∃j ∈ J \ I, I ∪ {j} ∈ I.

In general, a matroid is a pair (E, I) of a finite set E and its subset family I satisfying (I0)–(I2). We call
E the ground set, I the independent set family, and I ∈ I an independent set. The pair (E, I) defined
by (1) is an example of matroids, called a linear matroid represented by Q over K.

Given a matroid (E, I), a subset B ⊆ E is called a base if B is an inclusion-wise maximal independent
set. The following proposition immediately follows from (I2).

Proposition 1. All bases of a matroid have the same cardinality.

In a linear matroid represented by Q, the cardinality of a base equals to rank Q. In this case, Propo-
sition 1 shows that in Gaussian elimination, the number of nonzero rows of the resulting matrix, which
is equal to rank Q, does not depend on the choice of the pivoting elements.

We call the collection of all the bases the base family. The base family B satisfies the following
(B0)–(B1):

(B0) B 6= ∅,

(B1) B,B′ ∈ B, b ∈ B \ B′ ⇒ ∃e ∈ B′ \ B, (B \ {b}) ∪ {e} ∈ B.

Note that (B1) follows from (I2) by putting J = B′ and I = B \ {b}.
For a matroid (E, I), we define the rank function ρ : 2E → Z+ by

ρ(X) = max{|J | | J ⊆ X,J ∈ I} (X ⊆ E).

Then, ρ satisfies the following (R0)–(R3):

(R0) ρ(∅) = 0,
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(R1) ∀X ⊆ E, ρ(X) ≤ |X|,

(R2) X ⊆ Y ⇒ ρ(X) ≤ ρ(Y ),

(R3) ∀X,Y ⊆ E, ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ) (i.e., ρ is submodular).

Proof of (R3). Let H be a base of X∩Y , I a base of X containing H, and J a base of X∪Y containing I.
Then, |H| = ρ(X∩Y ), |I| = ρ(X), and |J | = ρ(X∪Y ). Moreover, |J∩Y | = |J \X|+ |H| = |J |−|I|+ |H|.
Hence,

|J ∩ Y | = |J | − |I| + |H|
= ρ(X ∪ Y ) − ρ(X) + ρ(X ∩ Y ).

Meanwhile, J ∩Y ∈ I implies |J ∩Y | ≤ ρ(Y ). Therefore, ρ(X)+ ρ(Y ) ≥ ρ(X ∪Y )+ ρ(X ∩Y ) holds.

In a matroid (E, I) defined by (1), the rank function is given by ρ(X) = rank Q[R,X].
It is known that both of (B0)–(B1) and (R0)–(R3) are equivalent to (I0)–(I2). That is, if we define

I = {J | J ⊆ B ∈ B} or I = {J | ρ(J) = |J |}, I satisfies (I0)–(I2). In other words, we can define a
matroid with (B0)–(B1) or (R0)–(R3).

Given a matroid (E, I), a member of 2E \ I is called a dependent set. A subset C ⊆ E is called
a circuit if C is an inclusion-wise minimal dependent set. In general, all circuits do not have the same
cardinality, which is in contrast to the case of the bases (cf. Proposition 1). We call the collection of all
the circuits the circuit family. The circuit family C satisfies the following (C0)–(C2):

(C0) ∅ /∈ C,

(C1) C,C ′ ∈ C, C ⊆ C ′ ⇒ C = C ′,

(C2) C,C ′ ∈ C, C 6= C ′, e ∈ C ∩ C ′ ⇒ ∃C◦ ∈ C, C◦ ⊆ C ∪ C ′ \ {e}.

Proof of (C2). Because of the minimality of C and C ′, we have ρ(C) = |C| − 1 and ρ(C ′) = |C ′| − 1.
Since C 6= C ′, the set C ∩ C ′ is independent, which implies ρ(C ∩ C ′) = |C ∩ C ′|. Then, it follows that

ρ(C ∪ C ′) ≤ ρ(C) + ρ(C ′) − ρ(C ∩ C ′) (∵ (R3))

= |C| + |C ′| − 2 − |C ∩ C ′|
= |C ∪ C ′| − 2 (∵ |C| + |C ′| = |C ∪ C ′| + |C ∩ C ′|).

Therefore, for e ∈ C ∩ C ′, we have

ρ(C ∪ C ′ \ {e}) ≤ ρ(C ∪ C ′) ≤ |C ∪ C ′| − 2 = |C ∪ C ′ \ {e}| − 1.

This implies that C ∪ C ′ \ {e} is a dependent set. Hence, there exists a circuit C◦ ⊆ C ∪ C ′ \ {e}.

A matroid can also be defined with (C0)–(C2).
We define the closure function cl : 2E → 2E by

cl(X) = {j | ρ(X ∪ {j}) = ρ(X)}.

We can easily see that cl (X) ⊇ X for X ⊆ E, and that cl (B) = E for B ∈ B.

2



Proposition 2. For any I ∈ I and any j ∈ cl(I) \ I, I ∪ {j} contains a unique circuit.

Proof. Since j ∈ cl(I)\I, I∪{j} is a dependent set and contains circuits. Let C and C ′ be circuits in I∪{j}.
Note that j ∈ C ∩ C ′. Suppose C 6= C ′. Then, by (C2), there exists a circuit C◦ ⊆ C ∪ C ′ \ {j} ⊆ I ∈ I,
which contradicts (I1).

Proposition 2 implies that an independent set I and an element j ∈ cl(I) determine a circuit, which
is called the fundamental circuit of I and j, and denoted by C(I|j).

2 Examples of Matroids

Binary matroid: A matroid representable by a matrix over the finite field GF(2) is called a binary
matroid.

Graphic matroid: Let G = (V,E) be an undirected graph. We call F ⊆ E a forest if F does not
contain any circuits. The family I of the collection of the forests satisfies (I0)–(I2), and hence the
pair (E, I) forms a matroid, called a graphic matroid. In a graphic matroid, a base, a circuit, and
the rank ρ(E) can be interpreted into the terms of graph theory as follows:

base ↔ spanning forest,
circuit ↔ elementary circuit, in which no vertex is traversed more than once,
ρ(E) ↔ (the number of vertices)−(the number of components).

The matroid (E, I) is a binary matroid represented by the incidence matrix of G.

Transversal matroid: For a bipartite graph G = (U, V ; E) with the vertex sets U, V and the edge set E,
we define I = {U ∩ ∂M | M ⊆ E : a matching}. Then, (U, I) forms a matroid, called a transversal
matroid.

Uniform matroid: Let us denote |U | by n. For an integer k ≤ n, we define I = {J | J ⊆ U, |J | ≤ k}.
Then, (U, I) forms a matroid, called a uniform matroid Un,k. This is a transversal matroid for a
complete bipartite graph Kn,k. It is known that U4,2 is not a binary matroid.
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