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Lecture 6 (Simultaneous Exchangeability)

Lecturer: Satoru Iwata Scribe: Noriyuki Ohkawa

Simultaneous Exchangeability

Proposition 1. For any circuit C and cocircuit C ∗, |C ∩ C∗| 6= 1.

Proof. We assume |C ∩ C∗| = 1. Let e be the only vertex in C ∩ C∗. Then C − {e} is an
independent set in M, and C∗ − {e} is an independent set in M∗.
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Figure 1: Like this

This mean that E − C∗\{e} includes a base of M. Hence there exists B ∈ B such that
C\{e} ⊆ B ⊆ E − C∗\{e}. Since e /∈ B, We get C∗ ⊆ E\B. It contradicts to C∗ is dependent
set in M∗ that C∗ is included in E\B which is a base of M∗.

Proposition 2. For any B1, B2 ∈ B and any b ∈ B1\B2, there exists e ∈ B2\B1 such that

(B1\{b}) ∪ {e} ∈ B, (B2 ∪ {b})\{e} ∈ B.

Proof. For fundamental cocircuit C∗(B1|b) = {e|(B1\{b}) ∪ {e} ∈ B} and fundamental
circuit C(B2|b) = {e|(B2 ∪{b})\{e} ∈ B}, b ∈ C∗(B1|b)∩C(B2|b). By Proposition1, we can see
that |C∗(B1|b) ∩ C(B2|b)| > 1. Thus, there exists e ∈ (C∗(B1|b) ∩ C(B2|b))\{b} ⊆ B2\B1.

Minor

Definition 3. For matroid M = (E, I), and F ⊆ E, we define reduction M · F as matroid
(F, IF ) which has IF = {I|I ∈ I, I ⊆ F} as family of independent set.

Definition 4. For Z ⊆ E, we define contraction M/Z as matroid (E\Z, ρZ ) which has
ρZ(X) = ρ(X ∪ Z) − ρ(Z) (X ⊆ E\Z) as rank function.

There is relation M/Z = (M∗ · (E\Z))∗ between reduction and contraction.
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Figure 2: Simultaneous Exchangeability

Definition 5. We define minor as matroid generated by applying reduction and contraction
repeatedly.

Properties which can express in terms of graph is closed under its minor.

Theorem 6 (Tutte). M is binary matroid, iff M doesn’t include U4,2 as minor.

Proof. Omitted.

Since properties which can express in terms of graph is closed under its minor, if L is minor
of binary matroid M, L is binary matroid. Now M doesn’t include uniform matroid as minor.
Because U4,2 is not binary matroid.

Exchangeable Graph

Definition 7. For matroid M = (E, I), I ∈ I, J ⊆ cl(I) and H = {(i, j)|j ∈ J\I, i ∈
C(I|j)}, we define exchangeable graph as graph G(I, J) = (I\J, J\I;H).

Proposition 8. B,D ∈ B ⇒ G(B,D):exchangeable graph which have perfect matching.

Proof. We now consider B,D ∈ B that have no perfect matching and minimize |B\D| =
|D\B|. By simultaneous exchangeability, for any j ∈ D\B, there exists i ∈ B\D, (i, j) ∈
H,D′ = (D − {i}) ∪ {i} ∈ B. Obviously |B\D′| = |B\D| − 1. Hence G(B,D′) have perfect
matching. Therefore M ∪ {(i, j)} is perfect matching of G(B,D).

Proposition 9. For B ∈ B, if exchangeable graph G(B,D) (|B| = |D|) have unique perfect

matching, D ∈ B.

Proof. Assume that D /∈ B. There exists C ∈ C such that C ⊆ D. For any i ∈ B\D,
|C ∩ C∗(B|i)| 6= 1 ⇒ |(C\B) ∩ C∗(B|i)| 6= 1. If i is connected to some node in C\B by perfect
matching M , |(C\B) ∩ C∗(B|i)| > 1. Hence, every these nodes have 2 or more edges witch
connect to C\B. Since there exists alternating closed path in G(B,D), there exists another
matching. But it contradict uniqueness of perfect matching.

Claim 10. For I ∈ I, |I| = |J |, J ⊆ cl(I), if G(I, J) have unique perfect matching, j ∈
I, cl(I) = cl(J).
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Proof. We get J ∈ I by applying above property to M· cl(I).
Since cl(J) ⊆ cl(cl(I)) = cl(I), and J is base of M · cl(I), cl(J) = cl(I).
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