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Simultaneous Exchangeability

PROPOSITION 1. For any circuit C and cocircuit C*, |C N C*| # 1.

PRrROOF. We assume |C' N C*| = 1. Let e be the only vertex in C N C*. Then C — {e} is an
independent set in M, and C* — {e} is an independent set in M*.
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Figure 1: Like this

This mean that E — C*\{e} includes a base of M. Hence there exists B € B such that
C\{e} € BC E—C*\{e}. Since e ¢ B, We get C* C F\B. It contradicts to C* is dependent
set in M* that C* is included in E'\ B which is a base of M*.

O

PROPOSITION 2. For any Bi,Bs € B and any b € B1\ By, there exists e € By\By such that

(B1\{b}) U{e} € B, (B2 U{b})\{e} € B.

PROOF. For fundamental cocircuit C*(B1|b) = {e|(B1\{b}) U {e} € B} and fundamental
circuit C'(Ba|b) = {e|(B2U{b})\{e} € B}, b € C*(B1|b) N C(Bz|b). By Propositionl, we can see
that |C*(B1|b) N C'(Bz|b)| > 1. Thus, there exists e € (C*(B1]b) N C(B3]b))\{b} C By\Bs.

U

Minor

DEFINITION 3. For matroid M = (E,Z), and F C E, we define reduction M - F' as matroid
(F,Z") which has ZF' = {I|I € Z,I C F} as family of independent set.

DEFINITION 4. For Z C E, we define contraction M /Z as matroid (F\Z,pz) which has
pz(X)=p(XUZ)—p(Z) (X C E\Z) as rank function.

There is relation M/Z = (M* - (E\Z))* between reduction and contraction.



Figure 2: Simultaneous Exchangeability

DEFINITION 5. We define minor as matroid generated by applying reduction and contraction
repeatedly.

Properties which can express in terms of graph is closed under its minor.
THEOREM 6 (TUTTE). M is binary matroid, iff M doesn’t include Us 2 as minor.
PROOF. Omitted. O

Since properties which can express in terms of graph is closed under its minor, if £ is minor
of binary matroid M, L is binary matroid. Now M doesn’t include uniform matroid as minor.
Because Uy 2 is not binary matroid.

Exchangeable Graph

DEFINITION 7. For matroid M = (E,Z), I € Z, J C cl(I) and H = {(i,))|j € J\I,i €
C(I]7)}, we define exchangeable graph as graph G(I,J) = (I\J,J\I; H).

PROPOSITION 8. B, D € B = G(B, D):exchangeable graph which have perfect matching.

PROOF. We now consider B, D € B that have no perfect matching and minimize |B\D| =
|D\B|. By simultaneous exchangeability, for any j € D\B, there exists i € B\D, (i,j) €
H,D" = (D — {i}) U {i} € B. Obviously |B\D'| = |B\D| — 1. Hence G(B, D') have perfect
matching. Therefore M U {(7,7)} is perfect matching of G(B, D). O

PROPOSITION 9. For B € B, if exchangeable graph G(B, D) (|B| = |D|) have unique perfect
matching, D € B.

PROOF. Assume that D ¢ B. There exists C' € C such that C C D. For any i € B\D,
|CNC*(Bli)| # 1= |(C\B)NC*(Bli)| # 1. If i is connected to some node in C\B by perfect
matching M, |(C\B) N C*(Bli)| > 1. Hence, every these nodes have 2 or more edges witch
connect to C'\B. Since there exists alternating closed path in G(B, D), there exists another
matching. But it contradict uniqueness of perfect matching. O

Cram 10. For I € Z,|I| = |J|,J C cl(I), if G(I,J) have unique perfect matching, j €
Z,cl(I) = cl(J).



PROOF. We get J € Z by applying above property to M - cl(1).
Since cl(J) C cl(cl(I)) = cl(I), and J is base of M - cl(1), cl(J) = cl(I).



