Discrete Methods in Informatics

November 28, 2005

Lecture 6 (Simultaneous Exchangeability)

Lecturer: Satoru Iwata

Scribe: Noriyuki Ohkawa

Simultaneous Exchangeability

PROPOSITION 1. For any circuit C and cocircuit C^* , $|C \cap C^*| \neq 1$.

PROOF. We assume $|C \cap C^*| = 1$. Let *e* be the only vertex in $C \cap C^*$. Then $C - \{e\}$ is an independent set in \mathcal{M} , and $C^* - \{e\}$ is an independent set in \mathcal{M}^* .

Figure 1: Like this

This mean that $E - C^* \setminus \{e\}$ includes a base of \mathcal{M} . Hence there exists $B \in \mathcal{B}$ such that $C \setminus \{e\} \subseteq B \subseteq E - C^* \setminus \{e\}$. Since $e \notin B$, We get $C^* \subseteq E \setminus B$. It contradicts to C^* is dependent set in \mathcal{M}^* that C^* is included in $E \setminus B$ which is a base of \mathcal{M}^* .

PROPOSITION 2. For any $B_1, B_2 \in \mathcal{B}$ and any $b \in B_1 \setminus B_2$, there exists $e \in B_2 \setminus B_1$ such that $(B_1 \setminus \{b\}) \cup \{e\} \in \mathcal{B}, (B_2 \cup \{b\}) \setminus \{e\} \in \mathcal{B}.$

PROOF. For fundamental cocircuit $C^*(B_1|b) = \{e|(B_1 \setminus \{b\}) \cup \{e\} \in \mathcal{B}\}$ and fundamental circuit $C(B_2|b) = \{e|(B_2 \cup \{b\}) \setminus \{e\} \in \mathcal{B}\}, b \in C^*(B_1|b) \cap C(B_2|b)$. By Proposition1, we can see that $|C^*(B_1|b) \cap C(B_2|b)| > 1$. Thus, there exists $e \in (C^*(B_1|b) \cap C(B_2|b)) \setminus \{b\} \subseteq B_2 \setminus B_1$.

Minor

DEFINITION 3. For matroid $\mathcal{M} = (E, \mathcal{I})$, and $F \subseteq E$, we define reduction $M \cdot F$ as matroid (F, \mathcal{I}^F) which has $\mathcal{I}^F = \{I | I \in \mathcal{I}, I \subseteq F\}$ as family of independent set.

DEFINITION 4. For $Z \subseteq E$, we define contraction \mathcal{M}/Z as matroid $(E \setminus Z, \rho_Z)$ which has $\rho_Z(X) = \rho(X \cup Z) - \rho(Z)$ $(X \subseteq E \setminus Z)$ as rank function.

There is relation $\mathcal{M}/Z = (\mathcal{M}^* \cdot (E \setminus Z))^*$ between reduction and contraction.

Figure 2: Simultaneous Exchangeability

DEFINITION 5. We define minor as matroid generated by applying reduction and contraction repeatedly.

Properties which can express in terms of graph is closed under its minor.

THEOREM 6 (TUTTE). \mathcal{M} is binary matroid, iff \mathcal{M} doesn't include $U_{4,2}$ as minor.

PROOF. Omitted.

Since properties which can express in terms of graph is closed under its minor, if \mathcal{L} is minor of binary matroid \mathcal{M} , \mathcal{L} is binary matroid. Now \mathcal{M} doesn't include uniform matroid as minor. Because $U_{4,2}$ is not binary matroid.

Exchangeable Graph

DEFINITION 7. For matroid $\mathcal{M} = (E, \mathcal{I}), I \in \mathcal{I}, J \subseteq \operatorname{cl}(I)$ and $H = \{(i, j) | j \in J \setminus I, i \in C(I|j)\}$, we define exchangeable graph as graph $G(I, J) = (I \setminus J, J \setminus I; H)$.

PROPOSITION 8. $B, D \in \mathcal{B} \Rightarrow G(B, D)$:exchangeable graph which have perfect matching.

PROOF. We now consider $B, D \in \mathcal{B}$ that have no perfect matching and minimize $|B \setminus D| = |D \setminus B|$. By simultaneous exchangeability, for any $j \in D \setminus B$, there exists $i \in B \setminus D$, $(i, j) \in H, D' = (D - \{i\}) \cup \{i\} \in \mathcal{B}$. Obviously $|B \setminus D'| = |B \setminus D| - 1$. Hence G(B, D') have perfect matching. Therefore $M \cup \{(i, j)\}$ is perfect matching of G(B, D).

PROPOSITION 9. For $B \in \mathcal{B}$, if exchangeable graph G(B, D) (|B| = |D|) have unique perfect matching, $D \in \mathcal{B}$.

PROOF. Assume that $D \notin \mathcal{B}$. There exists $C \in \mathcal{C}$ such that $C \subseteq D$. For any $i \in B \setminus D$, $|C \cap C^*(B|i)| \neq 1 \Rightarrow |(C \setminus B) \cap C^*(B|i)| \neq 1$. If i is connected to some node in $C \setminus B$ by perfect matching M, $|(C \setminus B) \cap C^*(B|i)| > 1$. Hence, every these nodes have 2 or more edges witch connect to $C \setminus B$. Since there exists alternating closed path in G(B, D), there exists another matching. But it contradict uniqueness of perfect matching. \Box

CLAIM 10. For $I \in \mathcal{I}, |I| = |J|, J \subseteq cl(I)$, if G(I, J) have unique perfect matching, $j \in \mathcal{I}, cl(I) = cl(J)$.

PROOF. We get $J \in \mathcal{I}$ by applying above property to $\mathcal{M} \cdot \operatorname{cl}(I)$. Since $\operatorname{cl}(J) \subseteq \operatorname{cl}(\operatorname{cl}(I)) = \operatorname{cl}(I)$, and J is base of $\mathcal{M} \cdot \operatorname{cl}(I)$, $\operatorname{cl}(J) = \operatorname{cl}(I)$.