1 Nash-Williams Theorem

Let \(G = (V, E) \) be an undirected graph and let \(d(v) \) be a degree of \(v \in V \). Given a mapping function \(b : v \to \mathbb{Z} \) which satisfies \(b(v) \leq d(v) \) for \(v \in V \), we define a \(b \)-detachment of \(G \) as follows:

Definition 1.1. \(b \)-detachment

Divide \(v \in V \) into \(b(v) \) nodes, and connect each edge to the nodes which are originally connected in \(G \).

Figure 1 shows the example of \(b \)-detachment.

Nash-Williams showed the following theorem about \(b \)-detachment.

Theorem 1.2. Nash-Williams (1985)

There exists a connected \(b \)-detachment if and only if \(\forall X \subseteq V, b(X) + c(G \setminus X) \leq e(X) + 1 \)

where \(b(X) = \sum_{v \in X} b(v) \), \(c(G \setminus X) \) denotes the number of components of \(G \setminus X \), and \(e(X) \) denotes the number of edge connecting to the node in \(X \).

Figure 2 shows the example of edges connecting to \(X \).

First we show the necessary condition briefly.

Proof. (Necessity)

Let \(G = (V, E) \) be a connected undirected graph after \(b \)-detachment. Let \(G' = (V', E') \) be an undirected
Figure 2: Example of edges connecting to X

Figure 3: Example of the proof of Necessity

Graph after contraction of each connected component of $G \setminus X$ (Figure 1). Then

$$|V'| = b(X) + c(G \setminus X) \quad (1)$$

and

$$|E'| = e(X) \quad (2)$$

hold. Since G' is connected, we need $b(X) + c(G \setminus X) \leq e(X) + 1$. (If equality holds, G' is a spanning tree).

We then give the complete proof of the Nash-Williams theorem.

Proof. Let $\Gamma = (W, \Gamma(E))$ be the graph obtained from G by replacing each vertex $v \in V$ by $b(v)$ copies, and by connecting for each edge $e = uv$, the $b(u)$ new vertices associated with u with $b(v)$ new vertices associated with v (Figure 4).
We assign to these edges of Γ the color e'. Then the connected b-detachment is obtained by the connected spanning tree of Γ in which all the edges have different colors.

In summary, we have the following equivalent propositions.

- There exists a connected b-detachment exist.
- There exists a spanning tree of Γ in which all the edges have a different color.
- There exist the bases of a graph matroid of Γ which are also the independent sets of a partition matroid of color assignment. (The rank of base of a graph matroid is $|W| - 1$. Since we use at most one edge of each color in the spanning tree, these edges correspond to the independent sets of the partition matroid.)

Proposition 1.3. There exist the bases of a graph matroid of Γ which are also the independent sets of a partition matroid of color assignment, if and only if $\forall F \subseteq E, \Gamma(E) \setminus \Gamma(F)$ have at most $|F| + 1$ components.

Proof. Let π be the rank function and \mathcal{I} be the independent set of the partition matroid. Let ρ be the rank function and \mathcal{F} be the independent set of the graph matroid of Γ. From the theorem in 7th lecture, we get

$$\max\{|I|\mid I \in \mathcal{I} \cap \mathcal{F}\} = \min\{\pi(X) + \rho(E - X)\mid X \subseteq E\} \tag{3}$$

Let us consider the bipartite graph in which the vertices are E and $\Gamma(E)$. Figure 5 shows the example of the bipartite graph. In figure 5, whatever we choose Y as a gray region and a solid line region, we have $\pi(Y) = |F|$. This equals the rank of partition matroid of $\Gamma(F)$, that is, $\pi(\Gamma(F)) = |F|$. We can therefore assume that Y is equal to the $\Gamma(F)$. Then we have

$$\max\{|I|\mid I \in \mathcal{I} \cap \mathcal{F}\} = \min\{|F| + \rho(\Gamma(E) \setminus \Gamma(F))\mid F \subseteq E\} \tag{4}$$

Let $I \in \mathcal{I} \cap \mathcal{F}$ be the base of the graph matroid of Γ and the independent set of the partition matroid, which satisfies $|I| = |W| - 1$. Therefore

$$\forall F \subseteq E, \rho(\Gamma(E) \setminus \Gamma(F)) + |F| \geq |W| - 1. \tag{5}$$

Let $c(X)$ represent the component of X. We have

$$\rho(\Gamma(E) \setminus \Gamma(F)) = |W| - c(\Gamma(E) \setminus \Gamma(F)). \quad \tag{6}$$
which follows
\[\forall F \subseteq E, c(\Gamma(E) \setminus \Gamma(F)) \leq |F| + 1. \quad (7) \]

In summary, there exist a connected b-detachment if and only if $\forall F \subseteq E, \Gamma(E) \setminus \Gamma(F)$ has at most $|F| + 1$ components.

To proof the Nash-Williams theorem, we need to show that $\forall F \subseteq E, c(\Gamma(E) \setminus \Gamma(F)) \leq |F| + 1$ if and only if $\forall X \subseteq V, b(X) + c(G \setminus X) \leq e(X) + 1$.

Let H_F and I_F denote
\[H_F : \Gamma(E) \setminus \Gamma(F) \]
\[I_F : \text{The set of isolated vertices of } G \setminus F. \]

The isolated vertices of $c(G \setminus F)$ appears twice in $c(G \setminus F)$ and the number of a component parts which are not isolated vertcies is not changed. Therefore we have
\[c(H_F) = c(G \setminus F) + b(I_F) - |I_F|. \quad (8) \]
We also have
\[c(\Gamma(E) \setminus \Gamma(F)) \leq |F| + 1, \forall F \subseteq E. \] (9)

Using the equations, we have
\[c(G \setminus F) - |F| + b(I_F) - |I_F| \leq 1, \forall F \subseteq E. \] (10)

Let \(F' \) be a set of edges which make \(I_F \) the isolated points, that is
\[I_{F'} = I_F \setminus F. \] (11)

Using \(F' \), (10) is equivalent to
\[c(G \setminus F') - |F'| + b(I_F) - |I_F| \leq 1, \forall F \subseteq E. \] (12)

Let \(e(X) \) denote the number of edge connecting to \(X \). Since \(c(G \setminus I_F) - |I_F| = c(G \setminus I_{F'}) = c(G \setminus I_F) \) and \(|F'| := e(I_{F'}) \), we have
\[c(G \setminus I_F) - e(I_F) + b(I_F) \leq 1, \forall F \subseteq E. \] (13)

Since we can assume \(I_F \) for \(\forall F \), we define \(I_F \) as \(X \),
\[c(G \setminus X) - e(X) + b(X) \leq 1, \forall X \subseteq V \] (14)

\[\square \]

2 Generalized Nash-Williams Theorem

We have the following theorem as a generalized version of Nash-Williams theorem.

Theorem 2.1. If there exists a connected \(b \)-detachment of \(G \) then there exist a connected \(b \)-detachment of \(G \), in which the degree sequence is equivalent to any degree sequences \(\sigma(v) \), where a degree sequence \(\sigma(v) \) satisfies \(\sigma(v) = (\sigma_1(v) \ldots \sigma_k(v)) \), \(k = b(v) \), \(\sum_{i=1}^{k} \sigma_i(v) = d(v) \).

Proof. For \(\Gamma \), we assume that the connected spanning graph \(Q \) which uses each color just once and \(\sum_{s \in W} |d_Q(s) - \sigma(s)| \) is minimum.

Suppose that the following equation does not satisfied.
\[d_Q(s) = \sigma(s), \forall s \in W. \] (15)

Then, for some \(v \in V \), there exist copies of \(v, s, t \in W \) which satisfies
\[d_Q(s) > \sigma(s) \] (16)
\[d_Q(s) < \sigma(t). \] (17)

Let
\[e \in Q : \text{forbidden edge } \iff s \text{ and } t \text{ are not connected in } Q \setminus e. \]
Let w be a copy of u. Then s connects at most one forbidden edge. Choose a edge e connecting s which is not forbidden edge. Remove e from Q and add e' to Q which is not in Q. Then $Q \setminus \{e\} \cap \{e'\}$ is connected. Now, since $d_Q(s)$ is decrease by one and $d_Q(t)$ is increased by one, $\sum_{s \in W} |d_Q(s) - \sigma(s)|$ is decreased by two. This contradicts the minimality of $\sum_{s \in W} |d_Q(s) - \sigma(s)|$.

Therefore $\sum_{s \in W} |d_Q(s) - \sigma(s)|$ is equal to 0. \qed
3 Extension of Euler’s Theorem

Let G be a connected euler graph. Since G is an euler graph, we can consider b-detachment which satisfies the following equation:

$$b(v) = \frac{d(v)}{2} \ (v \in V) \quad (18)$$

and each node has a degree as follows:

$$\sigma(v) = (2, 2, \ldots, 2) \quad (19)$$

Applying Nash-Williams’s theorem to G, we have

$$b(X) + c(G\setminus X) \leq e(X) + 1 \quad (20)$$

We also have

$$b(X) = \sum_{v \in X} \frac{d(v)}{2} = e(X) - \frac{d(X, E\setminus X)}{2} \quad (21)$$

Using the above equations we have

$$c(G\setminus X) \leq \frac{1}{2} d(X, E\setminus X) + 1. \quad (22)$$

Since we have equality only when b-detachment is a spanning tree. Since the b-detachmnet inlucde a cycle, we have

$$c(G\setminus X) < \frac{1}{2} d(X, E\setminus X) + 1, \quad (23)$$

which follows

$$2c(G\setminus X) \leq d(X, E\setminus X) \quad (24)$$

since G is an Euler graph and $d(X, E\setminus X)$ is even.