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1 Nash-Williams Theorem

Let G = (V,E) be an undirected graph and let d(v) be a degree of v ∈ V . Given a mapping function

b : v → Z which satisfies b(v) ≤ d(v) for v ∈ V , we define a b-detachment of G as follows:

Definition 1.1. b-detachment

Divide v ∈ V into b(v) nodes, and connect each edge to the nodes which are originally connected in G.

Figure 1 shows the example of b-detachment.
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Figure.1 Example of b-detachment. The number aside of each node v denotes its b(v).

Nash-Williams showed the following theorem about b-detachment.

Theorem 1.2. Nash-Williams (1985)

There exists a connected b-detachment if and only if ∀X ⊆ V, b(X) + c(G\X) ≤ e(X) + 1

where b(X) =
∑

v∈X b(v)，c(G\X) denotes the number of components of G\X，and e(X) denotes the

number of edge connecting to the node in X.

Figure 2 shows the example of edges connecting to X.

First we show the necessary condition briefly.

Proof. (Necessity)

Let G = (V,E) be a connected undirected graph after b-detachment. Let G′ = (V ′, E′) be an undirected
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Figure.2 Example of edges connecting to X
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Figure.3 Example of the proof of Necessity

graph after contraction of each connected component of G\X (Figure 1). Then

|V ′| = b(X) + c(G\X) (1)

and
|E′| = e(X) (2)

hold．Since G′ is connected, we need b(X) + c(G\X) ≤ e(X) + 1．（If equality holds, G′ is a spanning

tree).

We then give the complete proof of the Nash-Williams theorem.

Proof. Let Γ = (W, Γ(E)) be the graph obtained from G by replacing each vertex v ∈ V by b(v) copies,

and by connecting for each edge e = uv, the b(u) new vertices associated with u with b(v) new vertices

associated with v (Figure 4).

2



2

2

1 1

G �

Figure.4 Original graph G (left) and its Γ obtained by replacing each vertex v ∈ V by b(v) copies

and by connecting for each edge properly.

We assign to these edges of Γ the color e′. Then the connected b-detachment is obtained by the connected

spanning tree of Γ in which all the edges have different colors.

In summary, we have the following equivalent propositions.

• There exists a connected b-detachment exist.

• There exists a spanning tree of Γ in which all the edges have a different color.

• There exist the bases of a graph matroid of Γ which are also the independent sets of a partition

matroid of color assignment.(The rank of base of a graph matroid is |W | − 1. Since we use at

most one edge of each color in the spanning tree, these edges correspond to the independent sets

of the partition matroid.)

Proposition 1.3. There exist the bases of a graph matroid of Γ which are also the independent sets

of a partition matroid of color assignment, if and only if ∀F ⊆ E, Γ(E)\Γ(F ) have at most |F | + 1

components.

Proof. Let π be the rank function and I be the independent set of the partition matroid . Let ρ be

the rank function and F be the independent set of the graph matroid of Γ. From the theorem in 7th

lecture, we get
max{|I|

∣∣I ∈ I ∩ F} = min{π(X) + ρ(E − X)
∣∣X ⊆ E} (3)

Let us consider the bipartite graph in which the vertices are E and Γ(E). Figure 5 shows the example

of the bipartite graph. In figure 5, whichever we choose Y as a gray region and a solid line region, we

have π(Y ) = |F |. This equals the rank of partition matroid of Γ(F ), that is, π(Γ(F )) = |F |. We can

therefore assume that Y is equal to the Γ(F ). Then we have

max{|I|
∣∣I ∈ I ∩ F} = min{|F | + ρ(Γ(E)\Γ(F ))

∣∣F ⊆ E} (4)

Let I ∈ I ∩F be the base of the graph matroid of Γ and the independent set of the partition matroind,

which satisfies |I| = |W | − 1. Therefore

∀F ⊆ E, ρ(Γ(E)\Γ(F )) + |F | ≥ |W | − 1. (5)

Let c(X) represent the component of X. We have

ρ(Γ(E)\Γ(F )) = |W | − c(Γ(E)\Γ(F )). (6)
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Figure.5 the example of the bipartite graph in which E and Γ(E) are vertices.E＼F Γ(E)＼Γ(F)
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Figure.6 Example ofcomponents of Γ(E)\Γ(F )

which follows
∀F ⊆ E, c(Γ(E)\Γ(F )) ≤ |F | + 1. (7)

In summary, there exist a connected b-detachment if and only if ∀F ⊆ E, Γ(E)\Γ(F ) has at most

|F | + 1 components

To proof the Nash-Williams theorem, we need to show that ∀F ⊆ E, c(Γ(E)\Γ(F )) ≤ |F | + 1 if and

only if ∀X ⊆ V, b(X) + c(G\X) ≤ e(X) + 1

Let HF and IF denote

HF : Γ(E)\Γ(F )

IF : The set of isolated vertices of G\F .

The isolated vertices of c(G\F ) appeares twice in c(G\F ) and the number of a component parts which

are not isolated vertcies is not changed. Therefore we have

c(HF ) = c(G\F ) + b(IF ) − |IF |. (8)
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We also have
c(Γ(E)\Γ(F )) ≤ |F | + 1,∀F ⊆ E. (9)

Using the equatoins, we have

c(G\F ) − |F | + b(IF ) − |IF | ≤ 1,∀F ⊆ E. (10)

Let F ′ be a set of edges which make IF the isolated points, that is

IF ′ = IF F ′ ⊆ F. (11)

Using F ′, (10) is equivalent to

c(G\F ′) − |F ′| + b(IF ) − |IF | ≤ 1,∀F ⊆ E. (12)

Let e(X) denote the number of edge connecting to X. Since c(G\F ′) − |IF | = c(G\IF ′) = c(G\IF )

and |F ′| :=e(IF ′), we have
c(G\IF ) − e(IF ) + b(IF ) ≤ 1,∀F ⊆ E. (13)

Since we can assume IF for ∀F , we define IF as X,

c(G\X) − e(X) + b(X) ≤ 1,∀X ⊆ V (14)

2 Generalized Nash-Williams Theorem

We have the following theorem as a generalized version of Nash-Williams theorem.

Theorem 2.1. If there exists a connected b-detachment of G then there exist a connected b-detachment

of G, in which the degree sequence is equivalent to any degree sequences σ(v), where a degree sequence

σ(v) satisfies σ(v) = (σ1(v) . . . σk(v)), k = b(v),
∑k

i=1 σi(v) = d(v).

Proof. For Γ, we assume that the connected spanning graph Q which uses each color just once and∑
s∈W |dQ(s) − σ(s)| is minimum.

Suppose that the following equation does not satisfied.

dQ(s) = σ(s),∀s ∈ W. (15)

Then, for some v ∈ V , there exist copies of v, s, t ∈ W which satisfies

dQ(s) > σ(s) (16)
dQ(s) < σ(t). (17)

Let

e ∈ Q : forbidden edge ⇐⇒ s and t are not connected in Q\e.
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Figure.7 An example of exchange of edges

Let w be a copy of u. Then s connects at most one forbidden edge. Choose a edge e connecting s

which is not forbidden edge. Remove e from Q and add e′ to Q which is not in Q. Then Q\{e} ∩ {e′}
is connected. Now, since dQ(s) is decrease by one and dQ(t) is increased by one,

∑
s∈W |dQ(s)− σ(s)| is

decreased by two. This contradicts the minimality of
∑

s∈W |dQ(s) − σ(s)|.
Therefore

∑
s∈W |dQ(s) − σ(s)| is equal to 0.
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3 Extension of Euler’s Theorem

Let G be a connected euler graph. Since G is an euler graph, we can consider b-detachment which

satisfies the following equation:

b(v) =
d(v)
2

(v ∈ V ) (18)

and each node has a degree as follows:

σ(v) = (2, 2, . . . , 2) (19)

Apllying Nash-Williams’s theorem to G, we have

b(X) + c(G\X) ≤ e(X) + 1 (20)

We also have

b(X) =
∑
v∈X

d(v)
2

= e(X) − d(X,E\X)
2

. (21)

Using the above equations we have

c(G\X) ≤ 1
2
d(X,E\X) + 1. (22)

Since we have equality only when b-detachment is a spanning tree. Since the b-detachmnet inlucde a

cycle, we have

c(G\X) <
1
2
d(X,E\X) + 1, (23)

which follows
2c(G\X) ≤ d(X,E\X) (24)

since G is an Euler graph and d(X,E\X) is even.
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