
Discrete Methods in Informatics January 16, 2006

Lecture 10 (Submodular function)

Lecturer: Satoru Iwata Scribe: Masaru Iwasa and Yukie Nagai

Submodular functions are the functions that frequently appear in connection with many combi-

natorial optimization problems. For instance, cut capacity functions of networks and rank functions

of matroids are submodular functions. Learning about the properties of them helps our general- and

individual-based understanding of associated problems, so submodular functions are interesting.

1 Submodular functions and base polyhedra

Let V be a finite set and n = |V |. If a set function f : 2V → R satisfies

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for all X,Y ⊆ V , then f is referred to as a submodular function. Without loss of generality, we can

assume f(∅) = 0.

We introduce a space R
V = {x | x : V → R} as a framework for considering submodular functions.

For a vector x ∈ R
V and each v ∈ V , x(v) denotes the component of x associated with v. For a

subset Y ⊆ V , define x(Y ) =
∑

v∈Y
x(v). Then x satisfies x(∅) = 0 and can be identified with a

function consistently satisfying

x(X) + x(Y ) = x(X ∩ Y ) + x(X ∪ Y ). (1)

Let a set function f : 2V → R be a submodular function satisfying f(∅) = 0. Associated with f ,

the submodular polyhedron P(f) and the base polyhedron B(f) are defined as

P(f) = {x | x ∈ R
V , ∀Y ⊆ V, x(Y ) ≤ f(Y )},

B(f) = {x | x ∈ P(f), x(V ) = f(V )}.

In the case where |V | = 2, the submodular polyhedron P(f) and the base polyhedron B(f) are

represented as in Figure 1.
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Figure 1. The submodular polyhedron P(f) and the base polyhedron B(f).
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Proposition 1. For all Y,Z ⊆ V , if a vector x ∈ P(f) satisfies x(Y ) = f(Y ) and x(Z) = f(Z),

then x(Y ∩ Z) = f(Y ∩ Z) and x(Y ∪ Z) = f(Y ∪ Z).

Proof. By equation (1) and the submodularity of f ,

x(Y ∩ Z) + x(Y ∪ Z) = x(Y ) + x(Z)

= f(Y ) + f(Z)

≥ f(Y ∩ Z) + f(Y ∪ Z). (2)

And the vector x ∈ P(f) satisfies

x(Y ∩ Z) ≤ f(Y ∩ Z), (3)

x(Y ∪ Z) ≤ f(Y ∪ Z). (4)

To hold equation (2), equations (3) and (4) must hold with equalities. Hence, x(Y ∩Z) = f(Y ∩Z)

and x(Y ∪ Z) = f(Y ∪ Z). �

We denote x ≤ y when two vectors x, y ∈ R
V satisfy x(v) ≤ y(v) for every v ∈ V . If that x ≤ y

for any vector y ∈ P(f) implies x = y, then a vector x ∈ P(f) is called a maximal vector.

Proposition 2. The necessary and sufficient condition for a vector x ∈ P(f) to be a maximal

vector of P(f) is that x ∈ B(f).

Proof. It is trivial that x is a maximal vector of P(f) when x ∈ B(f). Now let us show that x ∈ B(f)

if x is a maximal vector of P(f).

When x is a maximal vector of P(f), subset Yv ⊆ V exists such that v ∈ Yv for all v ∈ V , and

x(Yv) = f(Yv) holds. It is because V =
⋃

v∈V
Yv, using Proposition 1, x(V ) = f(V ) holds. Hence,

x ∈ B(f). �

On a submodular polyhedron P(f), a linear programming problem with a nonnegative weight

vector p ∈ R
V is formulated as follows:

maximize
∑

v∈V

p(v)x(v)

subject to x ∈ P(f).

The optimum solution x of this problem is referred to as the p-maximal base and x ∈ B(f). In

the above formulation, constraints are not represented explicitly, but this problem has (2n − 1)

constraints. As n grows large (for example even about n = 100), it is difficult to solve this problem

in practical time. However, applying the submodularity of f helps to solve it efficiently.

Let distinct values of each component p(v) be p1 > p2 > · · · > pk and Ui = {v | p(v) ≥ pi}. Ui is

represented as in Figure 2.
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Figure 2. Ui = {v | p(v) ≥ pi}.

The next proposition characterizes the p-maximal base.

Proposition 3. The necessary and sufficient condition for a vector x ∈ B(f) to be a p-maximal

base is that for all i, x(Ui) = f(Ui).

Proof. In the dual problem:

minimize
∑

Y ⊆V

ξ(Y )f(Y )

subject to
∑

v∈Y ⊆V

ξ(Y ) = p(v) (v ∈ V ),

ξ(Y ) ≥ 0 (Y ⊆ V, Y 6= V ),

let ξ(V ) = pk for i = k and ξ(Ui) = pi − pi+1 for i = 1, . . . , k − 1. Define the other Y ⊆ V

as ξ(Y ) = 0. The variable ξ obtained in this way satisfies the constraints of the dual problem

and is a feasible solution. If a vector x ∈ B(f) satisfies x(Ui) = f(Ui) for all i, then x and ξ

satisfy the complementarity conditions and they are both the optimal solutions. In fact, when the

complementarity conditions about ξ:

for any Y ⊆ V , if ξ(Y ) > 0 then x(Y ) = f(Y ),

is satisfied, the following equation holds:

∑

Y ⊆V

ξ(Y )f(Y ) = pkf(V ) +

k−1
∑

i=1

(pi − pi+1)f(Ui)

= pkx(V ) +

k−1
∑

i=1

(pi − pi+1)x(Ui) =
∑

v∈V

p(v)x(v).

The existence of such a vector x ∈ B(f) is shown by the submodularity of f .

On the other hand, x(Ui) = f(Ui) holds because arbitrary p-maximal base x satisfies the comple-

mentarity conditions about ξ. �
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2 The relationship between submodular functions and convex functions

In this section, we state the proposition proved by L. Lovász that reveals the relationship between

submodular functions and convex functions.

Let V be a finite set and n = |V |. Then 2V corresponds to the vertices of a n-dimensional

hypercube Q = {p ∈ R
V | 0 ≤ p(v) ≤ 1}. Then we assume for any set function f : 2V → R that

satisfies f(∅) = 0, the functional value of f is determined at each vertex. When we consider deciding

the values of f at the other points, it is done with triangulation and simplicial subdivision.

An n-dimensional hypercube can be decomposed to n! congruent n-simplexes. And values of f at

non-vertex points of each n-simplex are linearly interpolated with the values of vertices. The values

of f obtained as stated above are continuous in n-dimensional hypercube.

For example, a 3-dimensional cube can be decomposed to 3! (= 6) congruent tetrahedrons. In the

3-dimensional cube in Figure 3, of these 6 tetrahedra, the one P = {p ∈ Q | p(1) ≥ p(2) ≥ p(3)}

with vertices corresponding to the sets ∅, {1}, {1, 2}, and {1, 2, 3} is drawn with heavy lines.

∅

{2}
{1,2}

{1}

{1,3}{3}

{2,3} {1,2,3}

Figure 3. A 3-dimensional cube.

For a non-negative vector p ∈ [0, 1]V , let distinct values of each component p(v) be p1 > p2 >

· · · > pk and Ui = {v | p(v) ≥ pi}. Then the sequence of positive real numbers λ1, λ2, . . . , λk−1

exists uniquely and is represented as

p =

k
∑

i=1

λiχUi
.

For any set function f : 2V → R satisfying f(∅) = 0, determine a function f̂ : R
V
+ → R as

f̂(p) =

k
∑

i=1

λif(Ui).

This definition corresponds to linear interpolation of values of non-vertex points in n-dimensional

hypercube. Note that for any α > 0, f̂(αp) = αf̂(p) holds.

The next proposition about the relationship between submodular functions and convex functions

is told by L. Lovász in 1983.
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Proposition 4. The necessary and sufficient condition for a function f to be submodular is that

f̂ is convex.

Proof. When a function f is submodular, by Proposition 3, for any p ∈ R
V ,

f̂(p) = max

{

∑

v∈V

p(v)x(v)

∣

∣

∣

∣

∣

x ∈ P(f)

}

holds. Hence, f̂ is a convex function.

Note that f̂(αp) = αf̂(p) holds for any α > 0, then if a function f̂ is convex, for any Y,Z ⊆ V

f̂(χY + χZ) = 2 · f̂

(

χY + χZ

2

)

≤ f̂(χY ) + f̂(χZ) = f(Y ) + f(Z)

holds. On the other hand, by the definition of f̂ ,

f̂(χY + χZ) = f̂(χY ∩Z) + f̂(χY ∪Z) = f̂(Y ∩ Z) + f̂(Y ∪ Z).

In consequence, f is a submodular function. �

By Proposition 4, submodular functions can be understood as set functions with convexity. It

is because minimization of convex functions can be solved in polynomial time, minimization of

submodular functions is solvable in polynomial time, too.
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