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Lecture 11 (Submodular Function 2)

Lecturer: Satoru Iwata Scribe: Kenya Ueno, Yoshifumi Inui

1 Greedy Algorithm

Let L be a linear order of a set V . That is, elements of V stand in a line as follows. We define L(v)

as a set which consists of elements from the first element to the element v.
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We define y as follows：
y(v) = f(L(v))− f(L(v) \ {v}) (v ∈ V ).

Then, we have the following theorem.

Theorem 1. y is a endpoint of B(f).

Proof. First, we show that y(X) ≤ f(X) holds for all X ⊆ V：

y(X) =
∑

v∈X

(f(L(v))− f(L(v) \ {v}))

≤
∑

v∈X

(f(X ∩ L(v))− f(X ∩ L(v) \ {v}))

= f(X).

The inequality is due to the submodular property. If v ∈ X, the inequality

f(L(v)) + f(X ∩ L(v) \ {v}) ≤ f(X ∩ L(v)) + f(L(v) \ {v})

holds because the union of X ∩ L(v) and L(v) \ {v} is L(v) and the intersection is X ∩ L(v) \ {v}.
Therefore, y ∈ P (f).

We also have y ∈ B(f) because y(V ) = f(V ). Actually,

∀v ∈ V, y(L(v)) = f(L(v))

holds and thus there are n independent equalities. From this, we can conclude that y is a endpoint.

As a corollary of this theorem, we obtain the following one.

Corollary 2. The base polytope B(f) is not empty.

This means that the core of the convex game is not empty.
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2 Max-Min Theorem

Theorem 3. min
X⊂V

f(X) = max{z(V ) | z ∈ P (f), z ≤ 0}

Proof. Since z ≤ 0, which means that z takes 0 for all elements, z(V ) ≤ z(X) holds. On the other hand,

z(X) ≤ f(X) holds because z ∈ P (f). Therefore, z(V ) ≤ f(X) holds and the left value is greater than

the right value.

Next, we define f◦ as:
f◦(X) = min{f(Z) | Z ⊂ X}.

f◦ is submodular because

f◦(X) + f◦(Y ) = f(X ′) + f(Y ′)

≥ f(X ′ ∪ Y ′) + f(X ′ ∩ Y ′)

≥ f◦(X ∪ Y ) + f◦(X ∩ Y )

from submodularity of f and the definition of f◦ where

f◦(X) = f(X ′), X ′ ⊂ X

f◦(Y ) = f(Y ′), Y ′ ⊂ Y.

Then, we have B(f◦) ⊆ P (f◦) ⊂ P (f) because f◦(X) ≤ f(X) and ∀X ⊂ V, f◦(X) ≤ 0 because

f◦(X) ≤ f({φ}) = 0. Since we know that B(f◦) is not empty, if we take an arbitrary element z from

B(f◦), we have
∀z ∈ B(f◦), ∀v ∈ V, z(v) ≤ 0.

Now, z satisfies z ∈ P (f), z ≤ 0 and is in B(f◦). Thus,

z(V ) = f◦(V ) = min{f(Z) | Z ⊆ V }

holds and the equality is proven.

We can also formalize this theorem as follows. We define x− as:

x−(v) = min{0, x(v)}.

Then,
x ∈ B(f) =⇒ x− ∈ P (f), x− ≤ 0

is clear. Conversely, we can see

z ∈ P (f), z ≤ 0 =⇒ ∃x ∈ B(f), x ≥ z.

Thus, we have the following equalities.

max{z(V ) | z ∈ P (f), z ≤ 0} = max{x−(V ) | x ∈ B(f)} = min
X⊆V

f(X)

The argument above develop into the algorithms for minimization of submodular functions, but we

will not discuss this here and give some references [1, 2].
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3 Graph Orientation

An orientation of a graph determines an indegree of each vertex of the graph.
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We consider the condition for existence of the orientation attaining a given indegree sequence.

V

X

Denote the number of edges connecting to vertex subset X ⊆ V by e(X). It is obvious the condition
{
∀X ⊆ V, y(X) ≤ e(X)

y(V ) = |E|

is a necessary condition of achievement. We prove the condition is also a sufficient condition.
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Construct a bipartite graph with vertex classes E and V , where e ∈ E and v ∈ V are adjacent if and

only if v is an endpoint of e. Let an edge set connecting to X ⊆ V be Γ(X), then the condition for

achievement can be restated into the condition

∀X ⊆ V, |Γ(X)| − y(X) ≥ 0.

We prove if this condition is satisfied there exists the orientation.

Construct a network by adding two vertexes s and t to the bipartite graph, connecting s and e ∈ E by an

edge with capacity 1, and connecting v ∈ V and t by an edge with capacity y(v). We determine capacities

of each original edge in the bipartite graph to be ∞ or 0 according to its orientation. For arbitrary X we

consider a cut in the above figure, then its capacity is |Γ(X)|+y(V \X) = |Γ(X)|+ |E|−y(X) neglecting

capacities of the original edges in the bipartite graph. As the value is more than or equal to |E|, from

the maximum-flow minimum-cut theorem we can conclude its maximum-flow equals to its minimum-cut

|E|. This indicates that we can set an indegree of each v ∈ V to be y(v) by an appropriate orientation.

Theorem 4. The set function e is a submodular function.

Proof. Denote by m(X, Y ) the number of edges connecting X and Y . Then, it follows that

e(X ∪ Y ) + e(X ∩ Y ) = e(X) + e(Y \X)−m(X, Y \X) + e(X ∩ Y )
= e(X) + e(Y \X)− (m(X\Y, Y \X) + m(X ∩ Y, Y \X)) + e(X ∩ Y )
= e(X) + (e(Y \X) + e(Y ∩X)−m(Y ∩X, Y \X))−m(X\Y, Y \X)
= e(X) + e(Y )−m(X\Y, Y \X)
≤ e(X) + e(Y ).
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