Discrete Methods in Informatics January 23, 2006

Lecture 11 (Submodular Function 2)
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1 Greedy Algorithm

Let L be a linear order of a set V. That is, elements of V stand in a line as follows. We define L(v)

as a set which consists of elements from the first element to the element v.
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We define y as followsO

Then, we have the following theorem.
Theorem 1. y is a endpoint of B(f).

Proof. First, we show that y(X) < f(X) holds for all X C VO

y(X) =D (F(L)) = f(L(v) \ {v}))

vexX
<D (F(XNL@) = F(X N L)\ {o})
_ i),
The inequality is due to the submodular property. If v € X, the inequality
FL) + F(X N L)\ {v}) < F(X N L)) + f(L(v) \ {v})

holds because the union of X N L(v) and L(v) \ {v} is L(v) and the intersection is X N L(v) \ {v}.
Therefore, y € P(f).
We also have y € B(f) because y(V) = f(V). Actually,

Vo eV, y(L(v)) = f(L(v))
holds and thus there are n independent equalities. From this, we can conclude that y is a endpoint. [
As a corollary of this theorem, we obtain the following one.
Corollary 2. The base polytope B(f) is not empty.

This means that the core of the convex game is not empty.



2 Max-Min Theorem
Theorem 3. )I{ncn‘l/ f(X)=max{z(V) | z € P(f), z <0}

Proof. Since z < 0, which means that z takes 0 for all elements, z(V) < z(X) holds. On the other hand,
z(X) < f(X) holds because z € P(f). Therefore, z2(V) < f(X) holds and the left value is greater than
the right value.

Next, we define f° as:

fo(X)=min{f(2) | Z C X}.

f¢ is submodular because
FAX) + V) = F(X) + f(Y)
> f(X'UY')+ f(X'nY’)
z [F(XUY)+ fo(xny)

from submodularity of f and the definition of f° where
X)) =fX"), X' cX
) =), Y cy.
Then, we have B(f°) C P(f°) C P(f) because f°(X) < f(X) and VX C V, f°(X) < 0 because

fo(X) < f({#}) = 0. Since we know that B(f°) is not empty, if we take an arbitrary element z from
B(f°), we have

Vz € B(f°), Yo eV, z(v) <0.

Now, z satisfies z € P(f), z <0 and is in B(f°). Thus,
z(V) = f°(V) =min{f(2) | ZC V}

holds and the equality is proven. O

We can also formalize this theorem as follows. We define z~ as:

x~ (v) = min{0, z(v)}.

Then,
x€B(f)=x € P(f), z <0

is clear. Conversely, we can see

2 € P(f), 2<0= 3z € B(f), z > =.

Thus, we have the following equalities.

max{z(V) | z € P(f), = < 0} = max{z™(V) | = € B(f)} = min f(X)

The argument above develop into the algorithms for minimization of submodular functions, but we

will not discuss this here and give some references [1, 2].



3 Graph Orientation

An orientation of a graph determines an indegree of each vertex of the graph.

We consider the condition f

Denote the number of edges connecting to vertex subset X C V by e(X). It is obvious the condition

VX CV, y(X)<e(X)
y(V) = |E|

is a necessary condition of achievement. We prove the condition is also a sufficient condition.



|E| y(V)=[E|

Construct a bipartite graph with vertex classes E and V, where e € E and v € V are adjacent if and
only if v is an endpoint of e. Let an edge set connecting to X C V be I'(X), then the condition for

achievement can be restated into the condition

VX CV, |D(X)| —y(X)>o0.

We prove if this condition is satisfied there exists the orientation.

Construct a network by adding two vertexes s and ¢ to the bipartite graph, connecting s and e € F by an
edge with capacity 1, and connecting v € V and t by an edge with capacity y(v). We determine capacities
of each original edge in the bipartite graph to be co or 0 according to its orientation. For arbitrary X we
consider a cut in the above figure, then its capacity is [I'(X)|+y(V\X) = |T'(X)| + | E| — y(X) neglecting
capacities of the original edges in the bipartite graph. As the value is more than or equal to |E|, from
the maximum-flow minimum-cut theorem we can conclude its maximum-flow equals to its minimum-cut

|E|. This indicates that we can set an indegree of each v € V' to be y(v) by an appropriate orientation.
Theorem 4. The set function e is a submodular function.
Proof. Denote by m(X,Y’) the number of edges connecting X and Y. Then, it follows that

(X UY)+e(XNY) =e(X) +e(Y\X) —m(X,Y\X) +e(X NY)

F (eM\X)+e(Y NX)—m(Y NX,V\X)) —m(X\Y,V\X)
+e(Y) —m(X\Y,Y\X)
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