Nash-Williams' theorem

Let $G = (V, E)$ be a graph. We denote the degree of $v \in V$ as $d(v)$, and define $b : V \to \mathbb{Z}$, which satisfies $0 \leq b(v) \leq d(v)$, $v \in V$.

Theorem 1 (Nash Williams). Following two conditions are equivalent.

1. There exists b-detachment of G.
2. $\forall X \subseteq V, b(X) \leq e(X) - c(G \setminus X) + 1$, when $b(X) = \sum_{v \in X} b(v)$, let $c(X)$ be the number of edges of X, and $c(G \setminus X)$ be the number of connected components of the graph which is derived by removing X and all edges connected to X from G.

Proof.

- $1 \to 2$
 This is proved in previous lecture.
- $2 \to 1$
 We define $f(X) = e(X) - c(G \setminus X) + 1$, then $f(\emptyset) = 0$, and $f(V) = |E| + 1$. Then,

Lemma 1. f is submodular function.

Proof. Let $X, Y, Z \subseteq V$, and $u, v \in V$ be $X = Z \cup \{u\}$, $Y = Z \cup \{v\}$, $v \in V$, and $e'(v)$ be the number of outgoing edges of u toward any vertices of Z. Let m be the number of connected components which are connected to u, but not connected to Z and b, and n be the number of connected components which are connected to v, but not connected to Z and u.

1. There are no edges between u and v, and no vertices which are connected to both u and v.

![Diagram](image1.png) Fig. 1 There are no edges between u and v, and no vertices which are connected to both u and $v.
\[f(X) + f(Y) = e(Z) + e'(u) - c(G \setminus (Z \cup \{u\})) + 1, \]
\[+ e(Z) + e'(v) - c(G \setminus (Z \cup \{v\})) + 1, \]
\[= 2e(Z) + e'(u) + e'(v) - n - m, \]
\[f(X \cup Y) + f(X \cup Y) = e(Z) + e'(u) + e'(v) - c(G \setminus (Z \cup \{u\} \cup \{v\})) + 1, \]
\[+ e(Z) - c(G \setminus Z) + 1, \]
\[= 2e(Z) + e'(u) + e'(v) - n - m. \]

then
\[(f(X) + f(Y)) - f(X \cup Y) + f(X \cup Y) = 0. \]

2. There are no edges between \(u \) and \(v \), and there exist \(k \geq 1 \) connected components which are connected to both \(u \) and \(v \).

![Diagram](image)

Fig. 2 There are no edges between \(u \) and \(v \), and there exist \(k \geq 1 \) connected components which are connected to both \(u \) and \(v \).

\[f(X) + f(Y) = e(Z) + e'(u) - c(G \setminus (Z \cup \{u\})) + 1, \]
\[e(Z) + e'(v) - c(G \setminus (Z \cup \{v\})) + 1, \]
\[= 2e(Z) + e'(u) + e'(v) - n - m. \]
\[f(X \cup Y) + f(X \cup Y) = e(Z) + e'(u) + e'(v) - c(G \setminus (Z \cup \{u\} \cup \{v\})) + 1, \]
\[e(Z) - c(G \setminus Z) + 1, \]
\[= 2e(Z) + e'(u) + e'(v) - n - m - k + 1. \]

then
\[(f(X) + f(Y)) - f(X \cup Y) + f(X \cup Y) \geq k - 1. \]

3. There exist a edge between \(u \) and \(v \), and \(k \geq 0 \) connected components which are connected both \(u \) and \(v \).
There exist an edge between \(u \) and \(v \), and \(k (\geq 0) \) connected components which are connected both \(u \) and \(v \).

\[
\begin{align*}
 f(X) + f(Y) &= e(z) + e'(u) + 1 - c(G \setminus (Z \cup \{u\}) + 1, \\
 e(Z) + e'(v) + 1 - c(G \setminus (Z \cup \{v\})) + 1, \\
 &= 2e(Z) + e'(u) + e'(v) - n - m + 2.
\end{align*}
\]

\[
\begin{align*}
 f(X \cup Y) + f(X \cup Y) &= e(z) + e'(u) + e'(v) + 1 - c(G \setminus (Z \cup \{u\} \cup \{v\}) + 1, \\
 e(Z) - c(G \setminus Z) + 1, \\
 &= 2e(Z) + e'(u) + e'(v) - n - m - k + 2.
\end{align*}
\]

Then,

\[
(f(X) + f(Y)) - f(X \cup Y) + f(X \cup Y) \geq k.
\]

This implies that 2 of theorem 1 means \(b \in P(f) (P:\text{submodular polytope}) \), then we proof

\[
b \in P(f) \rightarrow \exists b\text{-detachment}.
\]

\[
\begin{align*}
 f(\emptyset) &= 0, \\
 f(V) &= |E| + 1, \\
 \forall X \not\subseteq V, f(X) \leq e(X) : f(X) = e(X) - c(G \setminus X) + 1.
\end{align*}
\]

\[
\exists h \in B(f), h \geq b (B:\text{base polytope}), \text{because } b \in P(f). \text{ Choose randomly } r \in V. \ y(V) = |E|, \text{ when } y = h - X_r.
\]

Then,

\[
\begin{align*}
 y(X) &\leq h(X) \leq f(X) \leq e(X), \forall X \not\subseteq V, \\
 y(V) &= |E| = e(V).
\end{align*}
\]

This implies

\[
y \in B(e).
\]

There exists at least one orientation whose indegree are equal to \(y \).

Let \(X \) be a set of vertices which is reachable from \(r \).
There are no outgoing edges from X.

$$y(X) = e(X) \leq h(X) - 1 \leq f(X).$$

This implies $X = V$. There exists a directed minimum spanning tree T whose root is r, because all vertices in V are reachable from r.

Each $v \in V$ has $h(v) - 1$ edges in $E \setminus T$ whose end is v. This implies that there exists b-detachment of G.

\Box
Fig. 7 Detached vertices are end points, and they are reachable from r.