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FINDING 2-FACTORS CLOSER TO TSP TOURS IN CUBIC GRAPHS∗

SYLVIA BOYD† , SATORU IWATA‡ , AND KENJIRO TAKAZAWA§

Abstract. In this paper we are interested in algorithms for finding 2-factors that cover certain
prescribed edge-cuts in bridgeless cubic graphs. Since a Hamilton cycle is a 2-factor covering all
edge-cuts, imposing the constraint of covering those edge-cuts makes the obtained 2-factor closer to
a Hamilton cycle. We present an algorithm for finding a minimum-weight 2-factor covering all the 3-
edge cuts in weighted bridgeless cubic graphs, together with a polyhedral description of such 2-factors
and that of perfect matchings intersecting all the 3-edge cuts in exactly one edge. We further give an
algorithm for finding a 2-factor covering all the 3- and 4-edge cuts in bridgeless cubic graphs. Both
of these algorithms run in O(n3) time, where n is the number of vertices. As an application of the
latter algorithm, we design a 6/5-approximation algorithm for finding a minimum 2-edge-connected
spanning subgraph in 3-edge-connected cubic graphs, which improves upon the previous best ratio
of 5/4. The algorithm begins with finding a 2-factor covering all 3- and 4-edge cuts, which is the
bottleneck in terms of complexity, and thus it has running time O(n3). We then improve this time
complexity to O(n2 log4 n) by relaxing the condition of the initial 2-factor and elaborating on the
subsequent processes.
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1. Introduction. The classical theorem of Petersen [27] shows that any bridge-
less cubic graph has a 2-factor. The aim of this paper is to provide algorithms for
finding 2-factors that cover certain prescribed edge-cuts in bridgeless cubic graphs
and demonstrate their usefulness for developing approximation algorithms for related
NP-hard problems for such graphs. In section 3 we present a polyhedral description
of 2-factors covering all 3-edge cuts, as well as that of perfect matchings intersecting
all 3-edge cuts in exactly one edge, in bridgeless cubic graphs. In section 4 we give Al-
gorithm W3Cut, which finds a minimum-weight 2-factor covering all 3-edge cuts in a
weighted bridgeless cubic graph in O(n3) time, where n is the number of vertices, Note
that this represents the first polynomial-time algorithm for this problem. In section 5
we give Algorithm 34Cut, which finds a 2-factor that covers all the 3- and 4-edge
cuts in bridgeless cubic graphs. This algorithm also runs in O(n3) time and represents
the first polynomial-time algorithm for this problem. In section 6 we demonstrate the
usefulness of our results by using them to facilitate a new 6/5-approximation algo-
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rithm for the problem of finding a minimum 2-edge-connected spanning subgraph in
a 3-edge-connected cubic graph improving upon the previous best worst-case ratio of
5/4 for this problem [17, 18].

The problem of finding a 2-factor covering edge-cuts in a graph is closely related
to the problem of finding 2-factors of G which do not contain any cycles of prescribed
lengths (see [15] for an overview of what is known on this problem). We call a cycle of
length three a triangle and that of length four a square. In a bridgeless cubic graph G,
a 2-factor that covers all 3-edge cuts would form a triangle-free 2-factor, and, if G
is also 3-edge-connected, a 2-factor that covers all 3- and 4-edge cuts would form a
triangle- and square-free 2-factor, unless G is K4.

There exist polynomial-time algorithms for finding a minimum-weight triangle-
free 2-factor in weighted subcubic graphs [16, 22, 31]. For general weighted graphs,
the complexity of this problem is unknown, while a polynomial-time algorithm for
the unweighted version of this problem is given in [14]. Polynomial-time algorithms
are known for finding a triangle- and square-free 2-factor in subcubic graphs [3, 15].
For general graphs, the complexity of this problem is also unknown. Moreover, Vorn-
berger [31] showed that the problem of finding a minimum-weight triangle- and square-
free 2-factor is NP-hard, even in cubic graphs.

The algorithms for finding 2-factors which do not contain any cycles of length
three and/or four have proven useful in the design of approximation algorithms for
related NP-hard problems (cf. [1, 10, 26]). Surprisingly, despite being closely related
and thus also potentially useful, the problem of finding a 2-factor covering 3- and
4-edge cuts has received very little attention in the literature. It can be deduced from
polyhedral results of Edmonds [9] that any bridgeless cubic graph has a 2-factor that
covers all 3-edge cuts (see section 3), a fact which is shown in [19] and also shown and
used in [5] to get the first 4/3-approximation for graph-TSP. Furthermore, Kaiser
and Škrekovski [20] showed that any bridgeless cubic graph has a 2-factor covering all
3- and 4-edge cuts; however, their result is not algorithmic in nature (see section 5 for
more details on this). Note that it is not always possible to find a 2-factor covering
all 5-edge cuts in a bridgeless cubic graph (for example, consider the Petersen graph),
or one that covers all 2-edge cuts, and the complexity of finding a minimum-weight
2-factor covering all 3- and 4-edge cuts is currently not known.

Note that a 2-factor that covers all edge-cuts would form a Hamilton cycle. The
problem of finding a Hamilton cycle in bridgeless cubic graphs is known to be NP-
complete (see [24]). In the weighted case, a 2-factor found by Algorithm W3Cut

would provide a lower bound for the TSP in a bridgeless cubic graph. This lower
bound would be stronger than that provided by a minimum-weight 2-factor, or that
provided by a minimum-weight triangle-free 2-factor.

Moreover, Algorithm 34Cut is useful for designing an approximation algorithm
for the TSP. By using our algorithm as a preprocess for the algorithm in [13] for
the TSP on the metric completion of 3-edge-connected cubic graphs, we can improve
the approximation ratio (3/2 − 5/389) to 7/5, which was further improved to 4/3
recently [5]. In another related paper, Aggarwal, Garg, and Gupta [1] prove 4/3
specifically for 3-edge-connected cubic graphs in a more elegant way. Their algorithm
begins by finding a triangle- and square-free 2-factor. However, their algorithm and
proof could easily be both simplified and shortened by using our Algorithm 34Cut to
instead start with a 2-factor that covers all 3- and 4-edge cuts, as it would eliminate
the necessity of dealing with the cases of cycles of length five with chords.

In section 6 we further demonstrate the usefulness of Algorithm 34Cut by using
it to design a polynomial-time 6/5-approximation algorithm for the 2-edge-connected
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spanning subgraph problem for 3-edge-connected cubic graphs. Given any unweighted
graph G, the 2-edge-connected spanning subgraph problem (henceforth 2EC) is the
problem of finding a 2-edge-connected spanning subgraph of G with as few edges
as possible. This problem is known to be MAX SNP-hard even for cubic graphs
(see [8]) and has been widely investigated (see [18] for an overview). Krysta and
Anil Kumar [23] designed a 21/16-approximation algorithm for cubic graphs, and
Csaba, Karpinski, and Krysta [8] designed a (5/4 + ε)-approximation algorithm for
subcubic graphs. For 3-edge-connected cubic graphs, an algorithm achieving the
approximation ratio 5/4 was given by Huh [17]. For 2EC in general graphs, Vempala
and Vetta [30] and Jothi, Raghavachari, and Varadarajan [18] claimed to have 4/3- and
5/4-approximation algorithms, respectively. A recent paper of Sebő and Vygen [29]
contains, among other results, a 4/3-approximation algorithm for 2EC. Interestingly,
Vempala and Vetta [30] mentioned that in terms of possible improvements using their
approach, achieving a worst-case ratio of 6/5 would seem to be a barrier, and thus
our algorithm that achieves this bound has some significance.

For 2EC in 3-edge-connected cubic graphs, we present two algorithms, Algo-
rithm Apx2EC and Algorithm FastApx2EC, both of which have approximation
ratio 6/5. Algorithm Apx2EC begins with a 2-factor covering all 3- and 4-edge
cuts found by Algorithm 34Cut. This preprocessing is the bottleneck of the com-
plexity of the algorithm, and thus Algorithm Apx2EC has running time O(n3). In
Algorithm FastApx2EC, we make use of yet a third 2-factor algorithm we pro-
vide in this paper, which finds, in a given 3-edge-connected cubic graph, a 2-factor
which covers all 3-edge cuts and is square-free. Starting with this 2-factor has an
advantage: the algorithm to find such a 2-factor is faster than Algorithm 34Cut,
and this allows us to improve the time complexity of our 6/5-approximation algo-
rithm to O(n2 log4 n). However, this improvement comes at a cost: The resulting
6/5-algorithm is more complicated, and the proof of approximation is more difficult
(see section 7). So it seems that Algorithm 34Cut has definite advantages in this
regard.

A related approach for finding approximated 2EC solutions is to study the inte-
grality gap α(2EC), which is the worst-case ratio between the optimal value for 2EC
and the optimal value for the linear programming relaxation of its associated weighted
problem, obtained by taking the metric completion. The value α(2EC) gives one mea-
sure of the quality of the lower bound provided by the linear programming relaxation.
Moreover, a polynomial-time constructive proof for the value α(2EC) would provide
an α(2EC)-approximation algorithm for 2EC. For the metric completion of 3-edge-
connected cubic graphs, Huh’s results [17] imply that α(2EC) is at most 5/4. In
section 6 we improve upon this and show that α(2EC) for this class of graphs is at
most 6/5. This is significant, in that it has been conjectured that α(2EC) = 6/5 for
general weighted graphs; however, what is known is only that the integrality gap lies
somewhere between 6/5 and 3/2 for such graphs (see [2]).

The organization of this paper is summarized as follows. In section 2 we provide
some terminology and precise descriptions of the basic facts about 2-factors. A poly-
hedral description of 2-factors covering all 3-edge cuts in bridgeless cubic graphs is
given in section 3. In section 4 we present Algorithm W3Cut, an algorithm for find-
ing a minimum-weight 2-factor covering all 3-edge cuts in weighted bridgeless cubic
graphs. In section 5 we describe Algorithm 34Cut, an algorithm for finding a 2-factor
covering all 3- and 4-edge cuts in bridgeless cubic graphs. As an example of the use-
fulness of Algorithm 34Cut, in section 6 we give a 6/5-approximation algorithm for
2EC in 3-edge-connected cubic graphs which runs in O(n3) time and show that 6/5 is
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an upper bound for α(2EC). Finally, in section 7 we give a faster O(n2 log4 n)-time
algorithm for the same problem with the same approximation ratio.

2. Preliminaries. In this section we provide precise definitions and notation
and a formal description of basic results which motivated our work. Let G = (V,E)
be a graph with vertex set V and edge set E. In general, unless stated otherwise,
we allow G to have multiedges (i.e., parallel edges) but no loops. We denote an
edge with end vertices u and v by uv. We say that G is weighted if each edge
e ∈ E is assigned a real weight ce. For any vertex subset S ⊆ V , let S̄ denote
V \ S and let δ(S) denote the set of edges connecting S and S̄. We denote |δ(S)|
by d(S). For each vertex v ∈ V , δ({v}) and d({v}) are simply denoted by δ(v) and
d(v), respectively. A graph in which d(v) = 3 for all v ∈ V is called cubic. For a
subgraph H of graph G, the vertex set and edge set of H are denoted by V (H) and
E(H), respectively. For S ⊆ V , we let γ(S) denote the set of edges with both ends
in S and let G[S] denote the subgraph of G induced by S, i.e., G[S] = (S, γ(S)).
For S ⊂ V , let G/S be the graph obtained by shrinking S into a single pseudovertex
vS . Note that we keep multiple copies of edges in such a contraction but remove
loops.

A matching is a set of vertex-disjoint edges. A matching M is called perfect if
every vertex of G is incident to an edge in M . A 2-factor F is a set of edges F ⊆ E
such that every vertex of G is incident to exactly two edges in F . Note that the
complement of a 2-factor is a perfect matching in cubic graphs.

An edge subset D ⊆ E of the form D = δ(S) for some nonempty proper subset
S ⊂ V is called a cut. A cut D of cardinality k is called a k-edge cut if it is minimal
in the sense that D does not contain any cut as a proper subset. A graph G is said
to be k-edge-connected if every cut of G has cardinality at least k. A graph without
any 1-edge cut is called bridgeless. We say that a subset F of E covers a cut D if
F ∩D �= ∅.

Petersen’s theorem [27] states that every bridgeless cubic graph contains a perfect
matching. Schönberger [28] proved the following strengthened form of Petersen’s
theorem.

Theorem 2.1 (Schönberger [28]). Let G = (V,E) be a bridgeless cubic (multi-)
graph with specified edge e∗ ∈ E. Then there exists a perfect matching of G that
contains e∗.

A perfect matching containing a specified edge e∗ in a bridgeless cubic graph can
be found in O(n log4 n) time [4]. Taking the complement of the perfect matching in
Theorem 2.1 immediately gives the following corollary.

Corollary 2.2. Let G = (V,E) be a bridgeless cubic graph with specified
edge e∗ ∈ E. Then there exists a 2-factor of G that does not contain e∗.

Kaiser and Škrekovski [20] proved a still stronger theorem, for which we will give
an algorithmic proof in section 5.

Theorem 2.3 (Kaiser and Škrekovski [20]). Let G be a bridgeless cubic graph
with specified edge e∗. Then there exists a 2-factor of G that covers all 3- and 4-edge
cuts and does not contain e∗.

3. Polyhedral results. For any edge set F ⊆ E, the incidence vector of F is
the vector χF ∈ RE defined by χF

e = 1 for e ∈ F and χF
e = 0 for e ∈ E \ F . For any

edge set F ⊆ E and x ∈ RE, let x(F ) denote the sum
∑

e∈F xe. Given a graph G,
the associated 2-factor polytope, P 2F (G), is the convex hull of all incidence vectors
of the 2-factors of G. In [9], Edmonds shows that P 2F (G) is given by the following
linear system:
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x(δ(v)) = 2 for all v ∈ V,(3.1)

x(X)− x(δ(S) \X) ≤ |X | − 1 for all S ⊂ V ,(3.2)

X ⊆ δ(S), X a matching, |X | odd,
0 ≤ xe ≤ 1 for all e ∈ E.(3.3)

In the following theorem, we extend this result by giving a linear description of
the convex hull of all incidence vectors of G covering all 3-edge cuts, denoted by
P 2F3(G).

Theorem 3.1. The polytope P 2F3(G) is given by the system of constraints (3.1)–
(3.3) for the 2-factor polytope P 2F (G), with the addition of the following constraints:

x(δ(S)) = 2 for all S ⊂ V , δ(S) a proper 3-edge cut of G.(3.4)

Proof. Let P be the polytope defined by the system of constraints (3.1)–(3.3) and
constraints (3.4). Clearly P 2F3(G) ⊆ P . To show that P ⊆ P 2F3(G) is also true (and
thus complete the proof), we show that any x∗ ∈ P can be expressed as a convex
combination of incidence vectors of 2-factors that cover all 3-edge cuts of G.

Since x∗ ∈ P , we have that x∗ is also in P 2F (G) and thus can be expressed
as a convex combination of incidence vectors of 2-factors; i.e., there exist 2-factors
F1, . . . , Fk of G and positive real numbers λ1, . . . , λk such that

x∗ =

k∑

i=1

λiχ
Fi and

k∑

i=1

λi = 1.(3.5)

Now consider any proper 3-edge cut δ(S) of G. Clearly χFi(δ(S)) ≤ 2 for i = 1, . . . , k
since a 2-factor will use 0 or 2 edges of a 3-edge cut. Since we also have that x∗(δ(S)) =
2, it follows from (3.5) that we must have χFi(δ(S)) = 2 for i = 1, . . . , k. Consequently
x∗ is a convex combination of incidence vectors of 2-factors that cover all 3-edge cuts
of G.

It is not difficult to see that 2
3χ

E ∈ P 2F3(G); in particular, P 2F3(G) �= ∅ for
bridgeless cubic graphs. Thus, the following existence theorem, which is a weaker
statement than Theorem 2.3, directly follows from Theorem 3.1.

Corollary 3.2. Let G = (V,E) be a bridgeless cubic graph with specified
edge e∗ ∈ E. Then there exists a 2-factor of G that covers all 3-edge cuts in G
and does not contain e∗.

Similarly, we can obtain a polyhedral description of the convex hull of the inci-
dence vectors of perfect matchings of G that intersect every 3-edge cut in exactly one
edge, which we denote by PPM3(G). Given a graph G = (V,E), the associated perfect
matching polytope PPM (G) is the convex hull of all incidence vectors of the perfect
matchings of G and is given by the following linear system [9]:

x(δ(v)) = 1 for all v ∈ V,(3.6)

x(δ(S)) ≥ 1 for all S ⊂ V , |S| odd,(3.7)

xe ≥ 0 for all e ∈ E.(3.8)

Using this linear system, we have the following theorem, which can be proved similarly
to Theorem 3.1.

Theorem 3.3. The polytope PPM3(G) is given by the system of constraints (3.6)–
(3.8) for the perfect matching polytope PPM (G), with the addition of the following
constraints:

x(δ(S)) = 1 for all S ⊂ V , δ(S) a proper 3-edge cut of G.(3.9)
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4. Minimum-weight 2-factors covering the 3-edge cuts. In this section,
let G = (V,E) be a weighted bridgeless cubic graph with edge weights c ∈ RE . Recall
that G may have multiple edges but no loops, and |V | = n. We present an O(n3)-time
algorithm for finding a minimum-weight 2-factor that covers all the 3-edge cuts in G.
Note that such a 2-factor always exists by Corollary 3.2.

The set of edges incident to each vertex forms a 3-edge cut, which is covered by
every 2-factor in G. To exclude this kind of trivially covered 3-edge cut, we call a
3-edge cut δ(S) proper if 2 ≤ |S| ≤ n− 2. Thus our goal is to find a minimum-weight
2-factor F of G that covers all proper 3-edge cuts in G.

The general approach is an adaptation of one used in [7], and it involves choosing
a proper 3-edge cut D = δ(S), finding a 2-factor F ′ in G/S covering all 3-edge cuts
and a 2-factor F ◦ in G/S̄ covering all 3-edge cuts such that F ′ and F ◦ use the same
two edges of D, and then “gluing” them together. The fact that the resulting 2-factor
covers all 3-edge cuts in G is established by Lemma 4.1 below.

For the proof of this lemma, it is useful to note that for any graph G = (V,E), the
function d(.) is symmetric submodular ; i.e., for every two sets A,B ⊆ V , the following
two properties hold:

d(A) + d(B) ≥ d(A ∪B) + d(A ∩B),(4.1)

d(A) + d(B) ≥ d(A \B) + d(B \A).(4.2)

For an edge subset F ⊆ E, we use δF (S) and dF (S) to denote F ∩δ(S) and |F ∩δ(S)|,
respectively. Note that dF (.) is also symmetric submodular.

Lemma 4.1. Let D = δ(S) be a proper 3-edge cut of a bridgeless cubic graph G,
F ′ be a 2-factor in G/S covering all 3-edge cuts, and F ◦ be a 2-factor in G/S̄ covering
all 3-edge cuts such that F ′ and F ◦ use the same two edges of D. Then F = F ′ ∪ F ◦

is a 2-factor in G covering all proper 3-edge cuts in G.

Proof. Let δ(Z) be a proper 3-edge cut such that S and Z are crossing (i.e.,
S ∩ Z �= ∅, S ∪ Z �= V , S \ Z �= ∅, and Z \ S �= ∅). Since G is cubic, the fact that
d(S) = 3 implies that |S| is odd, and thus either |S ∩ Z| or |S \ Z| must be odd.
Assume without loss of generality that |S ∩ Z| is odd. Then |S ∪ Z| is also odd, and
hence both d(S ∩ Z) and d(S ∪ Z) are odd. Since G is bridgeless, the submodular
property (4.1) implies that d(S∩Z) = 3 and d(S∪Z) = 3. Hence δ(S∩Z) is a 3-edge
cut in G/S̄ and δ(S ∪Z) is a 3-edge cut in G/S, and it follows by the definition of F
that dF (S ∩ Z) = 2, dF (S ∪ Z) = 2, and dF (S) = 2, which implies dF (Z) ≥ 2 by the
submodular property (4.1) of dF (.).

The algorithm is described as follows.

Algorithm W3Cut

Input. A bridgeless cubic graph G = (V,E) with edge weights c ∈ RE.
Output. A minimum-weight 2-factor F in G covering all the 3-edge cuts in G.

Step 1. Find a proper 3-edge cut D = δ(S) of G such that no proper subset Y of
S forms a proper 3-edge cut δ(Y ) of G. If G does not contain any proper
3-edge cuts, then simply find a minimum-weight 2-factor F in G.

Step 2. Let D = {e1, e2, e3}. For i = 1, 2, 3, find a minimum-weight 2-factor F ◦
i in

G/S̄ not containing edge ei. The existence of F
◦
i follows from Corollary 2.2,

and F ◦
i can be found by applying a minimum-weight 2-factor algorithm to

the graph obtained by deleting ei from G/S̄.
Step 3. For each 2-factor F ◦

i found in Step 2, let Li = c(γ(S) ∩ F ◦
i ). We assign an

extra weight αi to each edge ei (i = 1, 2, 3) in G/S such that α1 + α2 = L3,
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α2 + α3 = L1, and α3 + α1 = L2. Define new edge weights c′ for the edges
of G/S by c′e = ce for e ∈ γ(S̄) and c′e = cei + αi for e = ei (i = 1, 2, 3).

Step 4. Now consider G/S, which is also a bridgeless cubic graph of smaller size
than G. Find a minimum-weight 2-factor F ′ covering all 3-edge cuts by
recursively applying the algorithm to G/S with weights c′. Let ei∗ be the
edge in D \ F ′, and return F = F ′ ∪ F ◦

i∗ .
The minimality of c(F ) in Step 4 is verified as follows. By the minimality of S,

one can apply Lemma 4.1, and hence F is a 2-factor in G covering all 3-edge cuts in G.
Let F̂ be any 2-factor in G that covers all 3-edge cuts in G and F̂ ′ be a 2-factor in G/S
obtained from F̂ by shrinking S. Then we have that c(F̂ ) ≥ c′(F̂ ′) ≥ c′(F ′) = c(F ).
Therefore the output F of Algorithm W3Cut has minimum weight among the 2-
factors covering all 3-edge cuts in G.

The time complexity T (n) of this algorithm is analyzed as follows. We have that

T (n) = T (n− l + 2) + 3T ′(l) + f(n),

where f(n) is the time complexity for finding a proper 3-edge cut δ(S) in G such that
no proper subset of S provides a proper 3-edge cut and T ′(l) is that for solving the
minimum-weight 2-factor problem in G/S̄ with l vertices. We obtain f(n) = O(n2)
as follows. We can assume that G is 3-edge-connected. (Otherwise, it suffices to
find a 2-edge cut δ(U) = {u1v1, u2v2}, where u1, u2 ∈ U , and then find a desired
proper 3-edge cut in two graphs: one is G[U ] plus edge u1u2 and the other G[Ū ] plus
v1v2.) Now construct a directed graph by replacing every edge with two oppositely
directed edges and find three edge-disjoint r-arborescences for a fixed vertex r ∈ V .
We have three paths from r to v for every vertex v ∈ V \ {r}, which correspond to a
maximum r-v flow. Then we know all 3-edge cuts separating r and v by decomposing
the residual graph into strongly connected components. Finding a 2-edge cut can be
done in O(n logn) time [12], finding three edge-disjoint r-arborescences in O(n logn)
time [12], and decomposing the residual graphs for all vertices in V \ {r} in O(n2)
time, and thus we obtain f(n) = O(n2). Also, we have T ′(l) = O(l2 log l) [11], and
consequently T (n) = O(n3).

Theorem 4.2. Algorithm W3Cut finds a minimum-weight 2-factor in G cover-
ing all the 3-edge cuts in O(n3) time.

Since the complement of a 2-factor in G is a perfect matching, the following is an
immediate consequence of Theorem 4.2.

Corollary 4.3. Algorithm W3Cut finds a maximum-weight perfect matching
in G which intersects every 3-edge cut in G in exactly one edge in O(n3) time.

5. Finding 2-factors covering all the 3- and 4-edge cuts. In this section, let
G = (V,E) be a bridgeless cubic graph with n vertices. We present Algorithm 34Cut,
an O(n3)-time algorithm for finding a 2-factor that covers all the 3- and 4-edge cuts
and does not contain a specified edge e∗ ∈ E, which provides a constructive proof for
Theorem 2.3. We also obtain an analogous result for the perfect matching of G which
is the complement of this 2-factor.

Once again, G may have multiple edges but no loops. Observe that a 4-edge
cut D = δ(S) with |S| = 2 is covered by every 2-factor. We call a 4-edge cut D = δ(S)
proper if 3 ≤ |S| ≤ n− 3. Our goal is to find a 2-factor F that covers all the proper
3- and 4-edge cuts in G.

5.1. Covering 3-edge cuts. Our algorithm starts by finding a proper 3-edge
cut δ(S). We will discuss later in section 5.2 what to do if G is free from proper
3-edge cuts. Once an appropriate S is found, the algorithm decomposes G into G/S
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and G/S̄. Note that both G/S and G/S̄ are bridgeless cubic graphs. Without loss of
generality, suppose that G/S contains e∗. We then apply the algorithm recursively to
G/S to obtain a 2-factor F ′ covering all the 3- and 4-edge cuts in G/S and excluding
e∗. Let f and f ′ be the two edges in F ′∩δ(vS). Again apply the algorithm recursively
to G/S̄ to obtain a 2-factor F ◦ with f, f ′ ∈ F ◦ covering all the 3- and 4-edge cuts
in G/S̄. Then F = F ◦ ∪ F ′ forms a 2-factor in G. The algorithm terminates by
returning F .

Lemma 5.1. The output F of the above algorithm is a 2-factor in G covering all
the 3- and 4-edge cuts in G.

Proof. By Lemma 4.1, F covers all 3-edge cuts in G. So consider a 4-edge cut in
G. Let δ(Z) be a proper 4-edge cut such that S and Z are crossing. Since d(S) is odd
and G is cubic, it follows that |S| is odd, and thus either |S ∩ Z| or |S \ Z| is even.
Suppose without loss of generality that |S∩Z| is even and |S\Z| is odd, which implies
d(S ∩ Z) is even and d(S \ Z) is odd. Since G is bridgeless, we have d(S ∪ Z) ≥ 2,
and thus d(S ∩ Z) ≤ 5 by the submodular property (4.1). Thus d(S ∩ Z) = 2 or
d(S ∩ Z) = 4 holds.

Suppose d(S ∩ Z) = 2. Consider d(Z \ S). It must be even since |Z \ S| is even,
and thus d(Z \ S) is either 2 or 4 by the submodular property (4.2). Since no proper
subset of δ(Z) forms a cut, we have d(Z \ S) + d(S ∩ Z) > d(Z). Thus d(Z \ S) = 4,
which implies d(S \Z) = 3 by the submodular property (4.2). By the definition of F ,
we have dF (Z \ S) ≥ 2, dF (S \ Z) ≥ 2, and dF (S) = 2. Thus we have dF (Z) ≥ 2 by
the submodular property (4.2) for dF (.).

If d(S ∩ Z) = 4, we have d(S ∪ Z) = 3 by the fact that |S ∪ Z| is odd and
the submodular property (4.1). By the definition of F , we have dF (S ∩ Z) ≥ 2,
dF (S ∪ Z) = 2, and dF (S) = 2, and we have dF (Z) ≥ 2 by the submodular prop-
erty (4.1) for dF (.).

5.2. Covering 4-edge cuts. In this subsection, suppose that G is free from
proper 3-edge cuts. We now discuss how to find a 2-factor covering all the 4-edge cuts
in G and containing two specified edges f and f ′ incident to a vertex r ∈ V . If G
admits no proper 4-edge cut, then we find an arbitrary 2-factor containing f and f ′

by the algorithm in [4].

We now suppose that G has a proper 4-edge cut. Let D = δ(Y ) be a proper 4-edge
cut such that r /∈ Y and no proper subset Z of Y provides a proper 4-edge cut δ(Z).
Suppose D = {e1, e2, e3, e4} with ej = ujvj , uj ∈ Y , and vj ∈ Ȳ for j = 1, 2, 3, 4.
Note that these end-vertices are all distinct since D is a proper cut, no proper subset
of D forms a cut, and G has no proper 3-edge cuts. Thus we cannot have both f
and f ′ belong to D. Construct the graph G/Ȳ . This graph is bridgeless and nearly
cubic in the sense that every vertex has degree three except for vȲ , which has degree
four. It follows from Corollary 2.2 that such a graph also admits a 2-factor, as will
be shown in the proof for Lemma 5.2 below. Let K be the family of pairs of edges in
D contained in 2-factors in G/Ȳ . Then H = (D,K) forms a graph with vertex set D
and edge set K.

Lemma 5.2. The graph H = (D,K) contains a square as a subgraph.

Proof. For each pair of distinct edges e ∈ D and e′ ∈ D, there exists a 2-factor
that contains e and does not contain e′ in G/Ȳ . To see this, split the vertex vȲ into
a pair of vertices t′ and t◦ connected by an additional edge e◦ in such a way that e
and e′ are incident to t′ and the remaining two edges in D are incident to t◦. The
new edge e◦ does not form a 1-edge cut since no proper subset of D is a cut, and
thus the resulting graph is a bridgeless cubic graph, which admits a 2-factor that does
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not contain e′ by Corollary 2.2. Contracting the new edge e◦, we obtain the desired
2-factor in G/Ȳ . As a consequence, the degree of H is at least two at each e ∈ D.
This implies that H contains a square as a subgraph.

We now suppose without loss of generality that e1e2, e2e3, e3e4, and e4e1 form
a square in H . Then construct a graph G∗ = (W,E∗) as follows. Construct G/Y ,
and then split vY into a pair of vertices s1 and s2 connected by an additional edge
e∗ in such a way that e1 and e3 are incident to s1 and e2 and e4 are incident to s2.
Thus the vertex set W and the edge set E∗ of G∗ are given by W = (V \Y )∪{s1, s2}
and E∗ = (E \ γ(Y ))∪ {e∗}. Note that G∗ is a bridgeless cubic graph which possibly
contains a proper 3-edge cut and is smaller in size than G. Apply the algorithm
recursively to obtain a 2-factor F ∗ covering all the 3- and 4-edge cuts in G∗ and
containing the two specified edges f and f ′.

We then split vȲ in G/Ȳ into two vertices t1 and t2 connected by an additional
edge e• in such a way that e1 and e3 are incident to t1 and e2 and e4 are incident to t2
to obtain a bridgeless cubic graph G•. Find a 2-factor F • such that F •∩D = F ∗∩D
as follows: If |F ∗ ∩ D| = 4, then it suffices to find a 2-factor in G• excluding e•. If
|F ∗ ∩ D| = 2, then the existence of F • follows from the construction of G∗ and G•,
and we have already obtained F • in the construction of H . Then F = F ∗ ∪F • forms
a 2-factor in G. The following lemma establishes the correctness of our algorithm.

Lemma 5.3. The output F is a 2-factor covering all the 4-edge cuts in G.
Proof. Let δ(Z) be a proper 4-edge cut such that Y and Z are crossing.
Suppose d(Y ∩ Z) = 2, which implies that |Y ∩ Z| is even. Since both |Z| and

|Y ∩ Z| are even, |Z \ Y | is even, and so is d(Z \ Y ). Thus by the submodular
property (4.2), d(Z \ Y ) is 2, 4, or 6. Since no proper subset of δ(Z) forms a cut, we
have d(Z \ Y ) + d(Y ∩ Z) > d(Z). Thus d(Z \ Y ) �= 2. If d(Z \ Y ) = 6, then we have
d(Y \ Z) = 2 by the submodular property (4.2), which is impossible since no proper
subset of δ(Y ) is a cut. Thus d(Z \ Y ) = 4 holds, and there exists exactly one edge
between Y ∩ Z and Z \ Y . Since dF (Z \ Y ) ≥ 2 by the definition of F , at least one
edge in F intersects δ(Z), which means Z is covered by F . Similarly, we may assert
that δ(Z) is covered by F if d(Y \ Z) = 2.

Suppose d(Y ∩ Z) = 3. Then Y ∩ Z must be a singleton, as G has no proper
3-edge cuts. Since Y and Z are proper 4-edge cuts, neither Y \ Z nor Z \ Y is a
singleton. Note that |Y \ Z| and |Z \ Y | are odd, and so are d(Y \ Z) and d(Z \ Y ).
Therefore we have d(Y \ Z) ≥ 5 and d(Z \ Y ) ≥ 5, which provide a contradiction to
(4.2). Thus we obtain d(Y ∩ Z) �= 3. Similarly, we may assert that d(Y \ Z) �= 3.

Finally, consider the remaining case of d(Y ∩ Z) = d(Y \ Z) = 4. Since no
proper subset of Y provides a proper 4-edge cut, we have |Y ∩ Z| = |Y \ Z| =
2. Then the induced subgraph G[Y ] = (Y, γ(Y )) forms a square with γ(Y ) =
{u1u2, u2u3, u3u4, u4u1}. If |F ∗ ∩ D| = 2, then F • contains three edges from γ(Y ),
and at least one of the three intersects δ(Z). If |F ∗∩D| = 4, then e1 and e3 belong to
the same cycle in F ∗, whereas u1 and u3 stay on different sides of δ(Z). Thus there
must be an edge in F intersecting δ(Z).

5.3. Algorithm description and complexity analysis. The algorithm is
summarized as follows.
Algorithm 34Cut

Input. A bridgeless cubic graph G = (V,E) and an edge e∗ ∈ E.
Output. A 2-factor inG covering all the 3- and 4-edge cuts inG and not containing e∗.
Step 1. Find a proper 3-edge cut δ(S). If G has no proper 3-edge cut, then go to

Step 2. Otherwise, construct G/S and G/S̄, and let G/S contain e∗. Apply
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the algorithm recursively to obtain a 2-factor F ′ covering all the 3- and 4-
edge cuts in G/S and excluding e∗. Let f, f ′ ∈ F ′ be the edges incident to
vS . Then apply the algorithm recursively to G/S̄ to obtain a 2-factor F ◦ in
G/S̄ covering all the 3- and 4-edge cuts in G/S̄ and excluding the unique
edge in δ(S) \ {f, f ′}. Return F ′ ∪ F ◦.

Step 2. Find a proper 4-edge cut D = δ(Y ) such that Y does not contain both end-
points of e∗ and no proper subset Z of Y provides a proper 4-edge cut δ(Z).
Then go to Step 3.

Step 3. For each pair of distinct edges e, e′ ∈ D, construct a graph G(e, e′) obtained
from G/Ȳ by splitting vȲ into a pair of vertices t′ and t◦ connected by an
additional edge e◦ in such a way that e and e′ are incident to t′ and the
remaining two edges in D are incident to t◦, and find a 2-factor in G(e, e′)
excluding e◦. Then go to Step 4.

Step 4. Construct G∗ as in section 5.2, according to the result in Step 3. Apply the
algorithm recursively to obtain a 2-factor F ∗ in G∗ covering all the 3- and
4-edge cuts in G∗ and excluding e∗, and then go to Step 5.

Step 5. Construct G• as in section 5.2, find a 2-factor F • in G• such that F • ∩D =
F ∗ ∩D, and then return F • ∪ F ∗.

We analyze the time complexity T (n) of Algorithm 34Cut. The decomposition
into G/S and G/S̄ for a proper 3-edge cut δ(S) implies that T (n) = T (n1)+T (n2)+
f(n), where f(n) is the time complexity for finding a proper 3-edge cut δ(S) in G
and n1 + n2 = n + 2. Note that f(n) = O(n2), as shown in section 4. By repeated
decomposition in Step 1, we obtain that

T (n) =

k∑

i=1

T ′(li) + O(n3),

where k = O(n),
∑k

i=1 li ≤ 2n, and T ′(li) is the time complexity for finding a 2-factor
covering all the 4-edge cuts in a bridgeless cubic graph on li vertices without proper
3-edge cuts. Furthermore, for T ′(l), we have that

T ′(l) = T (l1 + 2) + g(l2 + 2) + h(l),

where l1 + l2 = l, g(l) is the time complexity for finding a 2-factor excluding a
specified edge in a bridgeless cubic graph with l vertices, and h(l) is that for finding
a proper 4-edge cut δ(Y ) such that no proper subset Z of Y provides a proper 4-edge
cut in a bridgeless cubic graph on n vertices without a proper 3-edge cut. We have
g(l) = O(l log4 l) [4], and we obtain h(l) = O(l2) as follows. We can assume that
the graph has neither proper 3-edge cuts nor 2-edge cuts. Choose a vertex u, and
denote the edges incident to u by e1, e2, and e3. For each edge f not adjacent to e1,
contract e1 and f to vertices ve1 and vf , respectively, and find four edge-disjoint paths
connecting ve1 and vf , which correspond to a maximum ve1 -vf flow and can be found
in O(l) time [21, 25]. Then we know all 4-edge cuts separating e1 and f . In order to
find 4-edge cuts including e1, do the same procedures for e2 and e3. Consequently,
we obtain h(l) = O(l2), T ′(l) = O(l3), and T (n) = O(n3).

Theorem 5.4. Algorithm 34Cut finds a 2-factor in G covering all the 3- and
4-edge cuts and not containing a specified edge e∗ ∈ E in O(n3) time.

Again taking the complement of the obtained 2-factor, we have the following.
Corollary 5.5. Algorithm 34Cut finds a perfect matching in G intersecting

every 3-edge cut in exactly one edge and every 4-edge cut in 0 or 2 edges and containing
a specified edge e∗ ∈ E in O(n3) time.
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We remark that Kaiser and Škrekovski’s original proof [20] for Theorem 2.3 is not
a constructive one, while they also build upon a similar argument of gluing 2-factors.
In their proof, proper 4-edge cuts satisfying a specific property, not interlaced with
any other proper 4-edge cut, in their terms, play a key role. Thus, in designing an
algorithm based on their proof, one would need an efficient subroutine for finding a
proper 4-edge cut satisfying that property.

6. Approximating a minimum 2-edge-connected subgraph. In this sec-
tion, we describe Algorithm Apx2EC, a 6/5-approximation algorithm for the 2-edge-
connected subgraph problem (2EC) for 3-edge-connected cubic graphs. This algo-
rithm uses Algorithm 34Cut as a preprocess, finds a subgraph with at most 6n/5
edges containing two specified adjacent edges e1, e2 ∈ E, and runs in O(n3) time. We
then discuss the integrality gap α(2EC) for 2EC and prove that it is at most 6/5 for
3-edge-connected cubic graphs. For clarity, we remark here that a 3-edge-connected
cubic graph has no multiple edges since multiple edges with multiplicity two would
provide a 2-edge cut, and those with multiplicity three imply that G has only those
three edges.

6.1. An approximation algorithm. A path is a sequence (v0, e1, v1, . . . , ek,
vk), where ei = vi−1vi (i = 1, . . . , k) and v1, . . . , vk are distinct. A path in a
graph G is called a Hamilton path if it contains all vertices in G. A cycle is a se-
quence (v0, e1, v1, . . . , ek, vk), where ei = vi−1vi (i = 1, . . . , k), v1, . . . , vk−1 are dis-
tinct and v1 = vk. For a cycle C, an edge e ∈ E[C] \ E(C) is a chord of C. The size
of a cycle C is defined by the number of vertices in C and denoted by |C|. Where no
confusion arises, we often identify a path or a cycle Q with the subgraph consisting
of the vertices and edges in Q. For convenience, for a subgraph H of G, δ(H) denotes
the set of edges connecting V (H) and V \ V (H). Also, we will use G[H ] to denote
the subgraph induced by V (H).

The following lemma is an easy observation but plays a key role in our algorithm.
Lemma 6.1. Let G = (V,E) be a 2-edge-connected graph and C be a cycle in G

with at most two chords. Let V ∗ ⊆ V (C) be the set of vertices not incident to the
chords. For any vertex v∗ ∈ V ∗, there is a Hamilton path in G[C] starting at v∗ and
ending at some vertex u∗ ∈ V ∗.

Proof. Denote the two vertices adjacent to v∗ on C by i and j. We assume that
i �∈ V ∗ and j �∈ V ∗ since the statement is obvious if i ∈ V ∗ or j ∈ V ∗.

Suppose that C has a chord ij. If ij is the unique chord of C, then the statement
holds. Assume that C has another chord kl and the vertices in V ∗ appear in the
order of i, k, l, j on C. If l and j are adjacent on C, then G[C] has a Hamilton path
starting at v∗, traversing j, ji, i, k, kl, l in this order and ending at a vertex between
k and l. If there are vertices between l and j on C, then G[C] has a Hamilton path
starting at v∗, traversing j, ji, i, k, l in this order and ending at a vertex between j
and l.

Suppose the chord ij does not exist. In this case, we have two chords, ik and jl.
Assume that the vertices in V ∗ appear in the order of i, k, l, j on C. Then G[C] has
a Hamilton path starting at v∗, traversing i, k, l, lj, j in this order and ending at a
vertex between j and l.

Assume that the vertices in V ∗ appear in the order of i, l, k, j on C. If k and l are
not adjacent on C, then G[C] has a Hamilton path starting at v∗, traversing i, l, lj, j, k
in this order and ending at a vertex between k and l. If k and l are adjacent on C,
then there is at least one vertex between i and l or between j and k since otherwise
G has a 1-edge cut incident to v∗, which contradicts that G is 2-edge-connected.
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Suppose, without loss of generality, that i and l are not adjacent. Then G[C] has a
Hamilton path starting at v∗, traversing i, ik, k, j, jl, l in this order and ending at a
vertex between i and l.

Note that the proof implies how to find a desired Hamilton path in G[C].

To begin the algorithm, we apply Algorithm 34Cut to G to obtain a 2-factor F
which covers all the 3- and 4-edge cuts. The family of cycles in F is denoted by C.
The edges in E \ F , which form a perfect matching in G, are called the matching
edges. Observe that |C| ≥ 5 for each cycle C ∈ C. We say that a cycle C ∈ C is large
if |C| ≥ 10 and small if |C| ≤ 9. Note that all small cycles C have at most two chords
in G[C] unless C contains all vertices in G, and thus Lemma 6.1 can be applied to
such cycles.

In the algorithm, we maintain a subgraph H satisfying the following properties:

1. H is 2-edge-connected;
2. V (H) is the union of the vertex set of a subfamily of the cycles in C; and
3. |E(H)| ≤ 6|V (H)|/5.

The subgraph H is initially an arbitrary cycle in C and is augmented by adding
another subgraph H ′. The algorithm terminates when V (H) = V .

In constructing H ′, first we choose an edge e = uv ∈ δ(H), where u ∈ V (H) and
v ∈ V \ V (H), and let H ′ := ({u}, ∅). Here v belongs to a cycle C ∈ C which is not
contained in H . If C is a large cycle, then we add e and C to H ′ and continue to
grow H ′ from an arbitrary matching edge f ∈ δ(C) \ {e}. If C is a small cycle, by
Lemma 6.1 there exists a Hamilton path P of G[C] starting at v and ending at some
vertex w incident to a matching edge f ∈ δ(C) \ {e}. We call v and w the initial
vertex and terminal vertex of P , respectively. Here we add e and P to H ′ and then
continue to grow H ′ again from f , redefining e := f and C as the cycle we reach at
the other end of f .

The above two procedures are applied when C is not contained in H or H ′. If
we traverse e = uv to reach a cycle C ∈ C which is in H , then we have completed the
growth of the subgraph H ′, and we augment H with H ′. If we traverse e = uv to
reach a cycle C ∈ C with v ∈ C which has already been added to H ′, then we add e
to H ′ and construct either a lollipop or a tadpole.

We construct a lollipop if C is a large cycle. A lollipop L is a subgraph consisting
of the large cycle C plus the elements of H ′ added after C was added to H ′. See
Figure 6.1 for an illustration. Then we continue to grow H ′ from a matching edge f ∈
δ(L) \ E(H ′). Note that f always exists since G is 3-edge-connected.

We construct a tadpole if C is a small cycle. A tadpole T is a subgraph consisting
of the Hamilton path P derived from C plus the elements of H ′ added after P was
added to H ′. For a tadpole T , we specify two subgraphs, the tail and the head. Let
vC and wC be the initial and terminal vertices of P , respectively. The tail of T is a
subgraph of P , the path connecting vC and v. The head of T consists of the subgraph
of P connecting v and wC and elements of T added to H ′ after P was added to H ′.
See Figure 6.2 for an illustration. Then we continue to grow H ′ from a matching
edge connecting the head of T to V \ V (T ). The fact that there always exists such a
matching edge will be proved in Lemma 6.2.

We call a cycle in C which does not belong to any lollipop or tadpole an indepen-
dent cycle. If C is neither in H nor independent, then we construct a larger lollipop
or tadpole. If C is contained in a lollipop L, we construct a larger lollipop L̂, which
consists of L plus the elements of H ′ added after L was constructed. Then we continue
to grow H ′ from a matching edge in δ(L̂) \ E(H ′).
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Fig. 6.1. Construction of a lollipop L. The thick edges are the edges in L. The hexagon is
a small cycle of size six, and the four circles indicate large cycles. (Some vertices and edges are
omitted.)

Fig. 6.2. Construction of a tadpole T . The thick edges are the edges in T . The hexagon is
a small cycle of size six, and the three circles indicate large cycles. (Some vertices and edges are
omitted.) The dotted thick edges form the tail of T , and the solid thick edges form the head of T .

If C is contained in a tadpole T , then we construct a larger tadpole T̂ , which
consists of T and elements of H ′ added after T was constructed. The tail and head
of T̂ are defined as follows:

• If the vertex v ∈ V (C) at which we come back to C is in the tail of T , then
the tail of T̂ is a subgraph of the tail of T , a path connecting v, and the
initial vertex of the Hamilton path providing the tail of T . The head of T̂ is
a subgraph of H ′ consisting of edges in T not in the tail of T̂ and edges in
H ′ added after T was constructed.

• If v is in the head of T , then the tail of T̂ is the same as that of T , and the
head of T̂ consists of the head of T and the elements of H ′ added after T was
constructed.

Then we continue to grow H ′ from a matching edge connecting the head of T̂ and
V \ V (T̂ ).
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If a lollipop or a tadpole becomes contained in a larger lollipop or tadpole, then
we remove the contained lollipops and tadpoles from our list of them. That is, we
handle only inclusionwise maximal lollipops and tadpoles.

Below is a full description of the algorithm.

Algorithm Apx2EC

Input. A 3-edge-connected cubic graph G = (V,E).
Output. A 2-edge-connected spanning subgraph H of G with at most 6|V |/5 edges.

Step 1. Apply Algorithm 34Cut to find a 2-factor F of G covering all the 3- and
4-edge cuts. Choose an arbitrary cycle C0 in F , set H := C0, and then go
to Step 2.

Step 2. If V (H) = V , then return H . Otherwise, choose an arbitrary edge e =
uv ∈ δ(H), where u ∈ V (H) and v ∈ V \ V (H), let H ′ be the graph
consisting of the single vertex u, and go to Step 3.

Step 3. Denote by C the cycle in F containing v. If C is not contained in H , then
go to Step 4. Otherwise, go to Step 5.

Step 4. Here, we have the following four cases:
• If C is a large cycle not contained in H ∪H ′, then go to Step 4-1.
• If C is a small cycle not contained in H ∪H ′, then go to Step 4-2.
• If C is an independent large cycle in H ′ or is contained in a lollipop in
H ′, then go to Step 4-3.

• If C is an independent small cycle in H ′ or is contained in a tadpole in
H ′, then go to Step 4-4.

Step 4-1. Add e and C to H ′. That is, set V (H ′) := V (H ′) ∪ V (C) and E(H ′) :=
E(H ′)∪E(C)∪{e}. Then choose an arbitrary edge f from δ(C)\ {e}, set
the vertex that is the end of f not in C to v, set e := f , and go to Step 3.

Step 4-2. Let P be a Hamilton path of G[C] starting at v (see Lemma 6.1), and
denote the terminal vertex of P by w. Add e and P to H ′; that is, set
V (H ′) := V (H ′) ∪ V (C) and E(H ′) := E(H ′) ∪ E(P ) ∪ {e}. Then let f
be the matching edge incident to w, set the vertex that is the other end
of f to v, set e := f , and go to Step 3.

Step 4-3. Add e to H ′, and construct a lollipop L. Remove any lollipops or tadpoles
contained in L from the list of lollipops and tadpoles. Then choose an
arbitrary edge f from δ(L) \E(H ′), set the vertex that is the end of f not
in L to v, set e := f , and go to Step 3.

Step 4-4. Add e to H ′, and construct a tadpole T . Remove any lollipops or tadpoles
that are part of T from the list of lollipops and tadpoles. Then choose an
arbitrary edge f connecting the head of T to V \V (T ), set the vertex that
is the end of f not in T to v, set e := f , and go to Step 3.

Step 5. Augment H by H ′ and e. That is, set V (H) := V (H) ∪ V (H ′) and
E(H) := E(H) ∪E(H ′) ∪ {e}. Then, go to Step 2.

What remains to be proven is that we can continue to grow H ′ from the head of
a tadpole in Step 4-4.

Lemma 6.2. In Step 4-4, there exists an edge connecting the head of the tadpole T
and V \ V (T ).

Proof. Denote the small cycle providing the tail of T by CT . Let Q = V (T ) \
V (CT ) and R = V \V (T ). Note that all edges in δ(CT ), δ(Q), and δ(R) are matching
edges.

Suppose that no edge connects the head of the tadpole T and V \ V (T ). Then
there are no edges between Q and R. Since G is 3-edge-connected and F covers all
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3- and 4-edge cuts, there are at least five edges between V (CT ) and Q and at least
five edges between V (CT ) and R. It follows that |CT | ≥ 10, which contradicts that
CT is a small cycle.

Step 1 takes O(n3) time (see Theorem 5.4). The other steps of the algorithm
collectively take O(n) time, and thus the total time complexity is O(n3). The approx-
imation ratio follows from the following lemma.

Lemma 6.3. For an output H of Algorithm Apx2EC, it holds that |E(H)| ≤
max{n, 6n/5− 1}.

Proof. For n ≤ 9, the initial 2-factor which has all 3- and 4- edge cuts covered
must consist of just one cycle, and thus |E(H)| = n.

For n ≥ 10, partition the family C of cycles in F into two parts, L and S, where L
is the family of large cycles and S is that of small cycles. By construction, it is clear
that H contains at most 2(|C| − 1) edges from the matching edges E \ F . Moreover,
we use |C| edges from G[C] for a cycle C ∈ L, and |C| − 1 edges from G[C] for a
cycle C ∈ S, except possibly the initial cycle C0—if it is a small cycle, then we use
|C| edges from it. Thus, it follows that

|E(H)| ≤ n− (|S| − 1) + 2(|C| − 1) = n+ |S|+ 2|L| − 1 ≤ 6n/5− 1.

The last inequality follows from the definition of small and large cycles, which implies
that n ≥ 5|S|+ 10|L|.

As a consequence of the fact that n is a lower bound for 2EC, we obtain the
following theorem.

Theorem 6.4. Algorithm Apx2EC is a 6/5-approximation algorithm for 2EC in
3-edge-connected cubic graphs. More precisely, for a 3-edge-connected cubic graph G =
(V,E), Algorithm Apx2EC finds a 2-edge-connected subgraph H of G with |E(H)| ≤
6n/5− 1 in O(n3) time.

We finally remark that it is possible to make the output subgraph H in Algo-
rithm Apx2EC contain two specified adjacent edges.

Corollary 6.5. For a 3-edge-connected cubic graph G = (V,E) and two ad-
jacent edges e1, e2 ∈ E, one can find a 2-edge-connected subgraph H of G with
|E(H)| ≤ 6n/5− 1 and {e1, e2} ⊆ E(H) in O(n3) time.

Proof. Let e1, e2 ∈ E be adjacent at v ∈ V , and let e3 be the last edge in δ(v). In
Step 1 of Algorithm Apx2EC, we can apply Algorithm 34Cut so that the 2-factor F
does not contain e3. If e1 and e2 belong to a large cycle in F , then it is clear that they
belong to the output subgraph. If they belong to a small cycle in F , then it suffices
to choose that small cycle to be the initial cycle in H .

6.2. The integrality gap for 2EC. In the weighted version of 2EC, which we
denote by W2EC, we are given a complete graph Kn = (V,E) with edge weights w ∈
RE , and we wish to find a 2-edge-connected spanning subgraph of Kn of minimum
weight. We can associate such a weighted problem with our 2EC problem for a given
graph G by taking the metric completion of G, which is the complete weighted graph
obtained by assigning weight 1 to all edges of G, and letting each other edge have
weight equal to the length of a shortest path between its endpoints in G. We call this
weighted version of 2EC graph2EC . Note that the minimum size of a solution for
2EC is equal to the minimum weight solution for its associated graph2EC problem
(see [6]).

The integrality gap α(2EC) is the worst-case ratio between the optimal value for
2EC (i.e., its associated graph2EC) and the optimal value for the linear programming
relaxation of the integer programming formulation of the associated graph2EC. Since
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n is obviously a lower bound for the optimal value of the linear programming relaxation
for graph2EC, we obtain the following theorem, which is an immediate consequence
of Algorithm Apx2EC.

Theorem 6.6. The value of α(2EC) is at most 6/5 for 3-edge-connected cubic
graphs.

This result is significant, in that it has been conjectured that the integrality gap
α(W2EC) for general W2EC is 6/5, and, moreover, 6/5 is the best lower bound known
for α(W2EC) (see [2]). Previously, the best upper bound known for α(2EC) was 5/4,
which is implied by Huh’s algorithm in [17]. We remark that the best lower bound
we know for α(2EC) for bridgeless cubic graphs is 7/6 and for 3-edge connected cubic
graphs is 11/10.

7. A faster approximation algorithm. Let G = (V,E) be a 3-edge-connected
cubic graph with |V | = n. In this section, we describe an algorithm for finding a 2-
edge-connected spanning subgraph of G with at most 6n/5 edges in O(n2 log4 n) time.

In this algorithm, we begin with a 2-factor F which covers all the 3-edge cuts and
consists of cycles of size at least five (see section 7.2 for details). Note that this is
a relaxed condition for the initial 2-factor F in Algorithm Apx2EC. This relaxation
improves the time complexity for finding F , which is the bottleneck part of the entire
algorithm, but makes the following procedures more involved.

We inherit the terminology from Algorithm Apx2EC. The family of cycles in F is
denoted by C. The edges in E \F , which form a perfect matching in G, are called the
matching edges. We say that a cycle C ∈ C is large if |C| ≥ 10 and small if |C| ≤ 9.

7.1. Differences from Algorithm Apx2EC. We basically execute the same
procedures as in Algorithm Apx2EC. For the current initial 2-factor F , however,
Lemma 6.2 fails due to the fact that F does not necessarily cover all 4-edge cuts. In
this subsection, we exhibit tricks which ensure that a tadpole T has a matching edge
connecting its head and V \ V (T ).

For a cycle C, let G−C denote the subgraph of G obtained by deleting G[C] and
δ(C). If G−C is disconnected, then C is called a cut cycle. Let T be a tadpole, and
let C denote the small cycle providing the tail of T . If C is a cut cycle, then we do not
know whether there exists an edge connecting the head of T and V \ V (T ). In order
to ensure the existence of such an edge, we impose two new rules in constructing H .

In preparation for describing the rules, let us analyze the properties of small cut
cycles.

Lemma 7.1. A small cut cycle C ∈ C has the following properties:
1. G− C consists of exactly two components;
2. |C| = 8 or |C| = 9; and
3. C has no chords.

Proof. Since G is 3-edge-connected and F covers all the 3-edge cuts, each com-
ponent in G−C is connected to C by at least four edges in G. As C is a small cycle,
we have that |δ(C)| ≤ 9, which implies that the number of components in G−C is at
most two. Thus, we have that G − C consists of exactly two components and |C| is
eight or nine. Furthermore, we have that |δ(C)| ≥ 8 and |C| ≤ 9, which implies that
C has no chords.

When we find the initial 2-factor F and choose the initial cycle C0, for each small
cut cycle C other than C0, we label each edge in δ(C) as backward or forward. Denote
the component in G − C containing C0 by H0 and the other by H1. We call the
matching edges connecting H0 and C backward edges and those connecting H1 and C
forward edges. The lemma below immediately follows from Lemma 7.1.
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Fig. 7.1. Construction of a lollipop L by Trick 2. The thick edges are the edges in L. The
octagon is the small cut cycle C of size eight, and the three circles indicate large cycles. (Some
vertices and edges are omitted.)

Lemma 7.2. For a small cut cycle C, the number of forward edges is four or
five.

One new rule is for the choice of a Hamilton path in G[C] for a small cut cycle C.
When we come to a small cycle C by traversing a matching edge e = uv with v ∈ V (C),
we route a Hamilton path P in G[C] and leave C from a matching edge f ∈ δ(C). We
call this edge f as the leaving edge of P . Now, if C is a small cut cycle, Lemma 7.1
implies that G[C] has two Hamilton paths starting at v, which end at a vertex adjacent
to v on C. Here we impose a rule on the choice between these two Hamilton paths.
Trick 1. If at least one of the Hamilton paths has a backward leaving edge, then

choose it. Otherwise, choose a Hamilton path whose leaving edge is closer
to a backward edge other than e on C than that of the other Hamilton path.

The other new rule is in construction of a tadpole. When we come back to a
small cut cycle C, we construct a lollipop instead of a tadpole if a certain condition
is satisfied.
Trick 2. Let uv, ij, kl ∈ δ(C) be matching edges used to come to C, leave C, and

come back to C, respectively, where v, i, k ∈ V (C). If i and k are adjacent on
the Hamilton path of G[C] contained in H ′, then we construct a lollipop L
instead of the tadpole T as follows. The edge ik is deleted from H ′, and vi
is added to H ′. The vertex set of L is the same as that of T , and the edge
set of L is E(L) = (E(T ) \ {ik}) \ {vi}. See Figure 7.1 for an illustration.

Now we prove that the algorithm does not get stuck in leaving a tadpole from its
head.

Lemma 7.3. For a tadpole T , there exists an edge connecting the head of the
tadpole T and V \ V (T ).

Proof. Suppose, to the contrary, that there exists no edge connecting the head of
a tadpole T and V \ V (T ). Denote the small cycle providing the tail of T by CT , the
chosen Hamilton path of G[CT ] by P , and the matching edge used to come to CT at
the first time by mT = uv, where v ∈ V (CT ). Here we have that CT is a small cut
cycle. Recall that H0 is the component in G−CT containing the initial cycle C0 and
H1 is the other component. Observe that the rest of the tadpole forms H1, that is,
V (T ) \ V (CT ) = V (H1). (See Figure 7.2 for an illustration.)
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Fig. 7.2. The path P , indicated by the thick line, and edge vi form the small cut cycle CT .
The subgraph of P connecting v and k is the tail of T .

Fig. 7.3. Shrinking a cycle of size four.

Denote the forward edge which is used to leave CT by ij and the forward edge
which is used to come back to CT to form the tadpole T by kl, where i, k ∈ V (CT )
and j, l ∈ V (H1). By Trick 2, there exists at least one vertex between i and k on
P . Note that such a vertex p belongs to the head of T , and hence the matching edge
incident to p is a forward edge. This implies that P has at least two vertices between
i and a backward edge closest to i. By Trick 1, we have that the matching edges
incident to three vertices closest to v on P are forward edges. Therefore, CT has at
least six forward edges, which contradicts Lemma 7.2.

7.2. Finding the initial 2-factor. In this subsection, we describe how to find
a 2-factor which covers all the 3-edge cuts and consists of cycles of size at least five in
a 3-edge-connected cubic graph efficiently. If G is K4, then any cycle of length four
suffices. Thus, in what follows we assume that G is not K4.

First, take a maximal family Q of vertex-disjoint cycles of size four. Then we
“shrink” each cycle Q ∈ Q in the following manner. Let Q = (v1, e1, v2, e2, v3, e3, v4,
e4, v1). Delete all edges in E(Q), merge v1 and v3 into a single vertex s1 and v2 and
v4 into another vertex s2, and connect s1 and s2 by a new edge eQ. We refer to s1, s2
as pseudovertices and eQ as a pseudoedge. See Figure 7.3 for an illustration. Denote
the graph obtained by shrinking every cycle in Q by G′ = (V ′, E′). Note that G′

is a 2-edge-connected cubic graph. We also remark that a loop does not appear in
this procedure: if G′ has a loop attached to s1, then v1v3 ∈ E, and thus either V (Q)
provides a 2-edge cut or V (G) = V (Q) holds. The former case contradicts that G is
3-edge-connected and the latter that G is not a K4.

In G′, we find a 2-factor F ′ ⊆ E′ which covers all the 3-edge cuts. More specif-
ically, we describe a recursive algorithm to find a 2-factor F ′ covering all the proper
3-edge cuts and excluding a specified edge e∗ in a 2-edge-connected cubic graph G′.
If G′ has no proper 3-edge cut, then it suffices to find an arbitrary 2-factor exclud-
ing e∗, which can be done in O(n log4 n) time [4]. Suppose G′ has a proper 3-edge
cut D = δ(S). We construct two graphs, G′/S and G′/S̄. Without loss of generality,
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suppose that G′/S contains e∗. Then we apply the present algorithm recursively to
G′/S to obtain a 2-factor F ◦ covering all the 3-edge cuts and excluding e∗ in G′/S.
Identify the unique edge e in D \ F ◦. Then we again apply the present algorithm to
G′/S̄ recursively to obtain a 2-factor F • in G′/S̄ covering all 3-edge cuts in G′/S̄ and
excluding e. Now, by Lemma 4.1, F ′ = F ◦ ∪ F • is a 2-factor covering all the 3-edge
cuts in G′.

In order to find a proper 3-edge cut D in G′, perform the following procedure.
Find an arbitrary 2-factor F ′, and then contract each cycle in F ′ into a vertex to
obtain a new graph G′′. Then find an arbitrary 3-edge cut in G′′. Now if a 3-edge cut
in G′′ is found, then it corresponds to a proper 3-edge cut in G′. If G′′ has no 3-edge
cut, then we can conclude that F ′ is a 2-factor covering all 3-edge cuts in G′.

Then we unshrink all the pseudoedges sequentially to recover G. In unshrinking
a pseudoedge eQ, we extend F ′ by edges in E(Q) in the following manner.

Case 1 (eQ ∈ F ′). Denote the cycle in F ′ containing eQ by C. We choose the unique
triple of edges in E(Q) which provides a cycle CQ of size |C|+ 2.

Case 2 (eQ �∈ F ′).
Case 2.1. If s1 and s2 belong to the same cycle C in F ′, then choose the

pair of disjoint edges in E(Q) which provides a cycle CQ of size |C|+2.
Case 2.2. If s1 and s2 belong to distinct cycles C1 and C2 in F ′, then choose

any pair of disjoint edges in E(Q) to obtain a cycle CQ of size |C1| +
|C2|+ 2.

See Figure 7.4 for an illustration. In the end, we obtain a desired 2-factor F in G.

Lemma 7.4. The 2-factor F constructed as above covers all the 3-edge cuts and
consists of cycles of size at least five.

Proof. We first prove that F consists of cycles of size at least five. By the definition
of G′, F ′ does not contain a cycle of size less than five without pseudovertices. Let
eQ be a pseudoedge in G′ resulting from Q ∈ Q, and let G′

Q and F ′
Q be the graph

and 2-factor obtained from G′ and F ′ by unshrinking eQ, respectively. In Case 1,
|CQ| < 5 implies that |C| = 2. Then we have that V (Q) provides a 2-edge cut
in G, which contradicts that G is 3-edge-connected. In Case 2.1, |CQ| < 5 again
implies that |C| = 2. Let Q = (v1, e1, v2, e2, v3, e3, v4, e4, v1). Then we have that
V (G) = {v1, v2, v3, v4} and E(G) = {e1, e2, e3, e4, e′1, e′3}, where e′1 and e′3 are parallel
edges of e1 and e3, respectively. Now {v1, v2} provides a 2-edge cut, which is a
contradiction. In Case 2.2, |CQ| < 5 implies that |C1| = |C2| = 1, which contradicts
that G′ has no loops.

We now prove that F ′
Q covers all the 3-edge cuts in G′

Q. Since F ′ covers all the
3-edge cuts in G′, it suffices to consider 3-edge cuts in G′

Q containing edges in E(Q).
In both Cases 1 and 2, such an edge cut is covered by CQ. We inductively conclude
that F covers all the 3-edge cuts in G.

The procedures to find the initial 2-factor are summarized as follows.

Procedure Ini2F

Input. A 3-edge-connected cubic graph G = (V,E).
Output. A 2-factor F ⊆ E in G which covers all the 3-edge cuts and consists of

cycles of size at least five.

Step 1. Let Q be a maximal family of vertex-disjoint cycles of size four. Shrink
each cycle Q ∈ Q to a pseudoedge eQ to obtain a 2-edge-connected cubic
graph G′.

Step 2. Apply Procedure 3Cut below to obtain a 2-factor F ′ covering all the 3-edge
cuts in G′.
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Fig. 7.4. Unshrinking a pseudoedge. Thick edges are in F ′ and F . The three patterns indicate
Cases 1, 2.1, and 2.2, respectively. In Case 2.2, it is also possible to add e2 and e4 to F ′ instead of
e1 and e3.

Procedure 3Cut

Step 2.1. Find an arbitrary 2-factor F ′ in G′, and contract each cycle in
F ′ into a single vertex to obtain a new graph G′′.

Step 2.2. Find an arbitrary 3-edge cut in G′′. If no 3-edge cut exists, return
F ′.

Step 2.3. Let D = δ(S) be a proper 3-edge cut in G′ which corresponds to
the 3-edge cut in G′′ found in Step 2.2. Construct G′ × S and
G′ × S̄. Apply Procedure 3Cut to G′ × S recursively to obtain
a 2-factor F ◦ covering all the 3-edge cuts. Let e be the unique
edge in D \ F ◦, and again apply Procedure 3Cut to G′ × S̄ to
obtain a 2-factor F • covering all the 3-edge cuts and excluding
e. Return F ′ = F ◦ ∪ F •.

Step 3. Unshrink all the pseudoedges eQ sequentially to obtain a desired 2-factor F .
Denote the time complexity of Procedure Ini2F by T (n). Then we have that

T (n) = T (n1) + T (n2) + f(n),

where n1 and n2 denote the number of vertices in G × S and G × S̄, re-
spectively, and f(n) denotes the time complexity for finding a proper 3-
edge cut D in a cubic graph with n vertices. Note that finding Q can be
done in O(n) time. As stated above, for finding a proper 3-edge cut D, it
suffices to find a 2-factor in G′ and a 3-edge cut in G′′. The former can
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be done in O(n log4 n) time [4] and the latter in O(n logn) [12] by trying
to find four edge-disjoint arborescences in a digraph obtained by replacing
each edge by two oppositely directed edges. Consequently, we have that
f(n) = O(n log4 n) and T (n) = O(n2 log4 n).

By combining Procedure Ini2F and the argument in section 7.1, we obtain Algo-
rithm FastApx2EC.

Theorem 7.5. Algorithm FastApx2EC finds a 6/5-approximate solution for
2EC in 3-edge-connected cubic graphs in O(n2 log4 n) time.
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