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MAKING BIPARTITE GRAPHS DM-IRREDUCIBLE∗

KRISTÓF BÉRCZI† , SATORU IWATA‡ , JUN KATO§ , AND YUTARO YAMAGUCHI¶

Abstract. The Dulmage–Mendelsohn decomposition (or the DM-decomposition) gives a unique
partition of the vertex set of a bipartite graph reflecting the structure of all the maximum matchings
therein. A bipartite graph is said to be DM-irreducible if its DM-decomposition consists of a single
component. In this paper, we focus on the problem of making a given bipartite graph DM-irreducible
by adding edges. When the input bipartite graph is balanced (i.e., both sides have the same number
of vertices) and has a perfect matching, this problem is equivalent to making a directed graph strongly
connected by adding edges, for which the minimum number of additional edges was characterized
by Eswaran and Tarjan [SIAM J. Comput., 5 (1976), pp. 653–665]. We give a general solution to
this problem, which is divided into three parts. We first show that our problem can be formulated
as a special case of a general framework of covering supermodular functions, which was introduced
by Frank and Jordán [J. Combin. Theory Ser. B, 65 (1995), pp. 73–110] to investigate the directed
connectivity augmentation problem. Second, when the input graph is not balanced, the problem
is solved via matroid intersection. This result can be extended to the minimum cost version in
which the addition of an edge gives rise to an individual cost. Third, for balanced input graphs,
we devise a combinatorial algorithm that finds a minimum number of additional edges to attain the
DM-irreducibility, while the minimum cost version of this problem is NP-hard. These results also
lead to min-max characterizations of the minimum number, which generalize the result of Eswaran
and Tarjan.
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1. Introduction. The Dulmage–Mendelsohn decomposition [4, 5] (or the DM-
decomposition) of a bipartite graph gives a unique partition of the vertex set, which
reflects the structure of all the maximum matchings therein (see section 2.2 for the
details). A bipartite graph is said to be DM-irreducible if its DM-decomposition
consists of only one nonempty component.

In this paper, we focus on the following question: how many additional edges are
necessary to make a given bipartite graph G DM-irreducible?

Problem (DMI).
Input: A bipartite graph G = (V +, V −;E).
Goal: Find a minimum-cardinality set F of additional edges such that G + F is

DM-irreducible.
Throughout this paper, for an input bipartite graph G = (V +, V −;E), we define

n := max{|V +|, |V −|} ` := min{|V +|, |V −|}, and m := |E|. We say that G is balanced
if n = ` and unbalanced otherwise. We denote by opt(G) the optimal value of Problem
(DMI), i.e., the minimum number of additional edges to make G DM-irreducible.
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When G is balanced and has a perfect matching, Problem (DMI) is equivalent to
the problem of making a directed graph strongly connected by adding as few edges as
possible (see section 2.3). Eswaran and Tarjan [7] introduced the latter problem and
gave a simple solution (Theorem 2.1).

A natural generalization of the strong connectivity augmentation is to find a
smallest set of additional edges that make a given directed graph k-connected (i.e.,
such that removing at least k vertices is needed to violate strong connectivity). In
order to investigate this problem, Frank and Jordán [10] introduced a general frame-
work of covering a crossing supermodular function by directed edges. They provided
a min-max duality theorem and a polynomial-time algorithm relying on the ellip-
soid method. Later, Végh and Benczúr [22] devised a combinatorial algorithm whose
running time bound is pseudopolynomial, depending polynomially on the function
values.

In this paper, we give a general solution to Problem (DMI) summarized as follows:
• In general, the problem is within the Frank–Jordán framework.
• When G is unbalanced, the problem is solved via matroid intersection.
• When G is balanced, the problem is directly solved by an efficient algorithm.

1.1. Summary of main results. We first show that Problem (DMI) is a spe-
cial case of the Frank–Jordán framework in general. To be precise, we reduce the
unbalanced case to the balanced case and then formulate the balanced case in terms
of the Frank–Jordán framework. As a main consequence of this reduction, we derive
the following min-max duality on Problem (DMI) from the min-max duality theorem
of Frank and Jordán.

For a one-side vertex set X ⊆ V ± in a bipartite graph G = (V +, V −;E), we
denote by ΓG(X) ⊆ V ∓ the set of vertices in the other side that are adjacent to some
vertex in X. For a set S, a subpartition of S is a partition of some subset of S (i.e., a
family of disjoint nonempty subsets of S). A subpartition X of S is said to be proper
if X 6= {S}. For a subpartition X of V + or of V −, we define

(1) τG(X ) :=
∑
X∈X

(|X| − |ΓG(X)|+ 1) .

Recall that opt(G) denotes the optimal value of Problem (DMI).

Theorem 1.1. Let G = (V +, V −;E) be a bipartite graph with |V +| = |V −| ≥ 2.
Then we have

opt(G) = max
X

τG(X ),

where the maximum is taken over all proper subpartitions X of V + and of V −.

Theorem 1.2. Let G = (V +, V −;E) be a bipartite graph with |V +| < |V −|. Then
we have

opt(G) = max
X+

τG(X+),

where the maximum is taken over all subpartitions X+ of V +.

Besides, the function values that appear in the reduction to the Frank–Jordán
framework are bounded by O(n), and hence a direct application of the Végh–Benczúr
algorithm runs in polynomial time. Although this reduction reveals the tractability
of Problem (DMI), the running time is not satisfactory. Similarly to the directed
connectivity augmentation, it requires O(n7) time. As seen below, the Frank–Jordán
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framework is in fact excessively generalized to handle our problem, and one can solve
it much more simply and efficiently (cf. Theorems 1.3 and 1.4).

As the second result, we show that the unbalanced case reduces to the matroid
intersection problem. Then, with the aid of a fast matroid intersection algorithm, one
can solve the unbalanced case in O(n+m

√
` log `) time.

Theorem 1.3. For a bipartite graph G = (V +, V −;E) with ` = |V +| < |V −| = n
and |E| = m, one can find in O(n+m

√
` log `) time a minimum number of additional

edges to make G DM-irreducible.

Our reduction to matroid intersection can be utilized even when the addition
of each edge gives rise to an individual cost and we are required to minimize the
total cost. By using a weighted matroid intersection algorithm, one can solve the
minimum-cost augmentation problem in O(n2`) time. In contrast, in the balanced
case, the minimum-cost augmentation is NP-hard even when G has a perfect matching
and the number of different cost values is at most two (which was shown in [7] for the
strong connectivity augmentation). These facts imply that there is a significant gap
of the difficulty of the weighted versions between the balanced and unbalanced cases.

In addition, we derive the min-max duality for the unbalanced case (Theorem 1.2)
from Edmonds’ matroid intersection theorem, while it can be shown via the reduction
to the balanced case by using Theorem 1.1 (see Appendix A.1).

The third result is a direct combinatorial algorithm for the balanced case of
Problem (DMI), which runs in O(nm) time. While the unbalanced case is efficiently
solved via matroid intersection, one can also use this algorithm to solve the unbalanced
case with the aid of the reduction to the balanced case (see Appendix A.2).

Theorem 1.4. For a bipartite graph G = (V +, V −;E) with |V +| ≤ |V −| = n
and |E| = m, one can find in O(nm) time a minimum number of additional edges to
make G DM-irreducible.

Our algorithm also gives an alternative proof of Theorem 1.1, which is constructive
in the sense that one can easily construct a maximizer of τG as an optimality certificate
when the algorithm halts. It is worth mentioning that one can maximize τG-like
functions in polynomial time in a more general situation (see Appendix B).

1.2. Related work. For the directed k-connectivity augmentation, which is also
within the Frank–Jordán framework, Frank and Végh [11] gave a much simpler com-
binatorial algorithm when a given directed graph is already (k − 1)-connected. Since
“0-connected” enforces no constraint and “1-connected” is equivalent to “strongly con-
nected,” this special case also generalizes the strong connectivity augmentation. The
direction of generalization is, however, different from our problem. The Frank–Végh
setting is translated in terms of bipartite graphs as follows: for a given (k − 1)-
elementary balanced bipartite graph G, to make G k-elementary by adding a mini-
mum number of edges, where “0-elementary” and “1-elementary” are equivalent to
“perfectly matchable” and to “DM-irreducible,” respectively, and “k-elementary” is
strictly stronger than “DM-irreducible” when k ≥ 2. In our problem, we are required
to make a balanced bipartite graph G 1-elementary even when G is not 0-elementary.

The DM-decomposition is known to be a useful tool in numerical linear alge-
bra (see, e.g., [3]). A bipartite graph associated with a matrix is naturally defined by
its nonzero entries, and its DM-decomposition gives the finest block-triangularization,
which helps us to solve the system of linear equations efficiently. The finer the decom-
position, the finer from a computational point of view. Hence the DM-irreducibility
is not a desirable property in this context.
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There are, however, certain situations in which DM-irreducibility is rather prefer-
able. For example, in game theory, the uniqueness of the utility profile in a subgame
perfect equilibrium in a bargaining game is characterized by DM-irreducibility. In con-
trol theory, the structural controllability is characterized in terms of DM-irreducibility.
We explicate these situations and possible applications of our result in section 7.

1.3. Organization. The rest of this paper is organized as follows. In section 2,
we describe necessary definitions and known results on the DM-decomposition of
bipartite graphs and on the strong connectivity of directed graphs. In section 3, we
reduce the general case of Problem (DMI) to the supermodular covering framework of
Frank and Jordán and apply their result to prove Theorem 1.1. In section 4, we solve
the unbalanced case via matroid intersection. Section 5 is devoted to presenting our
direct algorithm for the balanced case. The correctness of the algorithm also gives an
alternative, constructive proof of Theorem 1.1. A key procedure in our algorithm is
shown separately in section 6. Finally, in section 7, we discuss possible applications
of our result in game theory and in control theory.

2. Preliminaries.

2.1. Strong connectivity of directed graphs. Let G = (V,E) be a directed
graph. A sequence P = (v0, e1, v1, e2, v2, . . . , el, vl) is called a path (or, in particular,
a v0–vl path) in G if v0, v1, . . . , vl ∈ V are distinct and ei = vi−1vi ∈ E for each
i ∈ {1, 2, . . . , l}. For two vertices u,w ∈ V (possibly u = w), we say that u is

reachable to w (or, equivalently, w is reachable from u) in G and denote by u
G−→ w if

there exists a u–w path in G. A directed graph is said to be strongly connected if every
two vertices are reachable to each other (also from each other). A strongly connected
component of G is a maximal induced subgraph of G that is strongly connected. The
strongly connected components of a directed graph can be found in linear time with
the aid of the depth first search [21].

Let S = {V1, V2, . . . , Vk} be the partition of V according to the strongly connected

components of G, i.e., for any two vertices u,w ∈ V , we have u
G−→ w and w

G−→ u if

and only if {u,w} ⊆ Vi for some i. For Vi, Vj ∈ S, we denote by Vi �G Vj if u
G−→ w

for every pair of u ∈ Vi and w ∈ Vj . Then the binary relation �G is a partial order on
S. A strongly connected component of G is called a source component if its vertex set
Vi is maximal with respect to �G (i.e., there is no Vj ∈ S \{Vi} with Vj �G Vi) and a
sink component if minimal. Note that a strongly connected component is a source or
sink component if and only if no edge enters or leaves it, respectively. The numbers
of source and sink components of G are denoted by s(G) and t(G), respectively.

Eswaran and Tarjan [7] characterized the minimum number of additional edges
to make a directed graph strongly connected and proposed a linear-time algorithm
for finding such additional edges as follows.

Theorem 2.1 (Eswaran and Tarjan [7, section 2]). Let G = (V,E) be a directed
graph that is not strongly connected. Then the minimum number of additional edges
to make G strongly connected is equal to max{s(G), t(G)}. Moreover, one can find
such additional edges in O(|V |+ |E|) time.

2.2. DM-decomposition of bipartite graphs. Let G = (V +, V −;E) be a
bipartite graph with the vertex set V partitioned into the left side V + and the right
side V −. Throughout this paper, a bipartite graph is dealt with as a directed graph in
which each edge is directed from left to right, i.e., E ⊆ V +×V −. An edge setM ⊆ E is
called a matching inG if |∂+M | = |∂−M | = |M |, where ∂+M := {u | uw ∈M } ⊆ V +
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and ∂−M := {w | uw ∈ M } ⊆ V −. A matching M is said to be maximum if |M | is
maximum and perfect if |M | = min{|V +|, |V −|} (this definition of “perfect matchings”
is unusual, where it extends a usual definition for the balanced bipartite graphs to
all the bipartite graphs). A bipartite graph is said to be perfectly matchable if it has
a perfect matching and matching covered if every edge is contained in some perfect
matching.

The DM-decomposition of a bipartite graph gives a unique partition of the vertex
set, which reflects the structure of all the maximum matchings therein as follows. For
a nonnegative integer k, we define [k] := {1, 2, . . . , k}. For a vertex set X ⊆ V , we
define X+ := X ∩ V + and X− := X ∩ V − and denote by G[X] the subgraph of G
induced by X.

Theorem 2.2 (Dulmage and Mendelsohn [4, 5]). Let G = (V +, V −;E) be a
bipartite graph. Then there exists a partition (V0;V1, V2, . . . , Vk;V∞) of V such that

1. either |V +
0 | > |V

−
0 | or V0 = ∅,

2. G[Vi] is balanced (i.e., |V +
i | = |V

−
i | > 0) and connected for each i ∈ [k],

3. either |V +
∞ | < |V −∞ | or V∞ = ∅,

4. G[Vi] is matching covered for each i ∈ [k] ∪ {0,∞}, and
5. every maximum matching in G is a union of perfect matchings in G[Vi].

We here define the DM-decomposition (V0;V1, V2, . . . , Vk;V∞) of a bipartite graph
G = (V +, V −;E), which satisfies the conditions in Theorem 2.2 (see also, e.g., [17,

19]). Define a set function fG : 2V
+ → Z by

(2) fG(X+) := |ΓG(X+)| − |X+| (X+ ⊆ V +),

where recall ΓG(X+) = {w | ∃e = uw ∈ E : u ∈ X+ } ⊆ V −. It is well known
that fG is submodular, and hence all the minimizers of fG form a distributive lattice
L(fG) with respect to the set union and intersection (see, e.g., [12, Lemma 2.1]). For
a maximal monotonically increasing sequence (called a maximal chain) X+

0 ( X+
1 (

· · · ( X+
k in L(fG), define Vi := V +

i ∪ V
−
i for each i ∈ [k] ∪ {0,∞} as follows:

V +
0 := X+

0 , V −0 := ΓG(X+
0 ),

V +
i := X+

i \X
+
i−1, V −i := ΓG(X+

i ) \ ΓG(X+
i−1) (i ∈ [k]),

V +
∞ := V + \X+

k , V −∞ := V − \ ΓG(X+
k ).

It is known that the resulting partition of V with the following partial order v is
unique (i.e., does not depend on the choice of a maximal chain in L(fG)):

Vi v Vj ⇐⇒
[
V +
j ⊆ X

+ ∈ L(fG) =⇒ V +
i ⊆ X

+
]

(i, j ∈ [k] ∪ {0,∞}).

Moreover, while V + and V − do not seem symmetric in the above definition, it is also
known that essentially the same partially ordered partition is obtained by interchang-
ing the roles of V + and of V −, in which, e.g., V0 and V∞ are interchanged and the
direction of v is reversed.

The DM-decomposition is known to be obtained as follows (cf. [19, section 2.2.3]).
Take an arbitrary maximum matching M ⊆ E in G. Construct the auxiliary graph
G(M) := G+M with respect to M , where M := { ē := wu | e = uw ∈M } ⊆ V −×V +

denotes the set of reverse edges. The set of vertices reachable from some vertex in
V +\∂+M in G(M) is V0, and the set of vertices reachable to some vertex in V −\∂−M
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in G(M) is V∞. The rest V∗ := V \ (V0 ∪V∞) is partitioned according to the strongly
connected components of G∗ := G(M)[V∗]. The partial order v is defined by �G∗
on {Vi | i ∈ [k] } and so that V0 and V∞ are minimum and maximum elements,
respectively. By this computation, one can easily see the following properties.

Observation 2.3. Let (V0;V1, V2, . . . , Vk;V∞) be the DM-decomposition of a bi-
partite graph G = (V +, V −;E). Then, for any maximum matching M ⊆ E in G, the
auxiliary graph G(M) satisfies the following conditions:

• No edge leaves V0.
• No edge enters V∞.
• Each source component of G(M)[V0] is a single vertex in V + \∂+M , and vice

versa. Hence, s(G(M)[V0]) = |V +| − |M |.
• Each sink component of G(M)[V∞] is a single vertex in V − \ ∂−M , and vice

versa. Hence, t(G(M)[V∞]) = |V −| − |M |.

A bipartite graph G = (V +, V −;E) is said to be DM-irreducible if its DM-
decomposition consists of only one nonempty component, i.e., either V0 = V , V1 = V ,
or V∞ = V . By the symmetry, we always assume |V +| ≤ |V −| without notice. That
is, if G is unbalanced, then |V +| < |V −|.

2.3. Relation to strong connectivity augmentation. From the computa-
tion of the DM-decomposition, a balanced bipartite graph G = (V +, V −;E) is DM-
irreducible if and only if G has a perfect matching M ⊆ E and the auxiliary directed
graph G(M) = G+M is strongly connected. In addition, a directed graph G = (V,E)
is strongly connected if and only if the balanced bipartite graph G̃ = (Ṽ +, Ṽ −; Ẽ)
defined as follows is DM-irreducible:

Ṽ + := { v+ | v ∈ V }, Ṽ − := { v− | v ∈ V },

Ẽ := {u+w− | uw ∈ E } ∪ { v+v− | v ∈ V }.

Note that G̃ has a perfect matching M̃ := { v+v− | v ∈ V } ⊆ Ẽ, and the DM-
irreducibility of G̃ is equivalent to the strong connectivity of G̃(M̃), in which the two
vertices v+ ∈ Ṽ + and v− ∈ Ṽ − derived from each vertex v ∈ V must be contained in
a single strongly connected component.

Hence, Problem (DMI) with the input bipartite graph balanced and perfectly
matchable is equivalent to making a directed graph strongly connected by adding a
minimum number of edges, which was solved by Eswaran and Tarjan [7] (cf. The-
orem 2.1). Note that every strongly connected component of the auxiliary directed
graph intersects both V + and V − in this case, and one can choose, freely in each
strongly connected component, the heads and tails of additional edges in the strong
connectivity augmentation. This equivalence is utilized in our algorithm for the bal-
anced case presented in section 5.

3. Reduction to supermodular covering. In this section, we show that Prob-
lem (DMI) is a special case of supermodular covering introduced by Frank and Jordán
[10]. We first describe necessary definitions and the min-max duality theorem on su-
permodular covering in section 3.1. Next, in section 3.2, we show a reduction of the
unbalanced case of Problem (DMI) to the balanced case. In section 3.3, we then for-
mulate the balanced case in terms of the Frank–Jordán framework. Finally, via the
reduction to supermodular covering, we give a proof of our min-max duality theorem
(Theorem 1.1) in section 3.4.
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3.1. Supermodular covering problem and min-max duality. Let V + and
V − be finite sets. Two ordered pairs (X+, X−), (Y +, Y −) ∈ 2V

+×2V
−

are said to be
dependent if both X+ ∩ Y + and X− ∩ Y − are nonempty and independent otherwise.
A family F ⊆ 2V

+ × 2V
−

is called crossing if, for every pair of dependent members
(X+, X−), (Y +, Y −) ∈ F , both (X+ ∩ Y +, X− ∪ Y −) and (X+ ∪ Y +, X− ∩ Y −) are
also in F .

A function g : F → Z≥0 on a crossing family F ⊆ 2V
+×2V

−
is said to be crossing

supermodular if, for every pair of dependent members (X+, X−), (Y +, Y −) ∈ F with
g(X+, X−) > 0 and g(Y +, Y −) > 0, we have

g(X+ ∩ Y +, X− ∪ Y −) + g(X+ ∪ Y +, X− ∩ Y −) ≥ g(X+, X−) + g(Y +, Y −).

We say that a multiset F of directed edges in V +×V − covers a crossing supermodular
function g : F → Z≥0 if |F (X+, X−)| ≥ g(X+, X−) holds for every (X+, X−) ∈ F ,
where F (X+, X−) denotes the multiset obtained by restricting F into X+ ×X−.

Problem (FJ).
Input: A crossing supermodular function g : F → Z≥0 on a crossing family F ⊆

2V
+ × 2V

−
.

Goal: Find a minimum-cardinality multiset F of directed edges in V + × V − such
that F covers g.

Frank and Jordán [10] showed a min-max duality on this problem as follows.

Theorem 3.1 (Frank and Jordán [10, Theorem 2.3]). The minimum cardinality
of a multiset F of directed edges in V +×V − such that F covers a crossing supermod-
ular function g : F → Z≥0 is equal to the maximum value of

η(S) :=
∑

(X+,X−)∈S

g(X+, X−),

taken over all subfamilies S ⊆ F whose members are pairwise independent.

3.2. Reduction of the unbalanced case to the balanced case. As men-
tioned several times, the unbalanced case of Problem (DMI) can be reduced to the bal-
anced case. To show such a reduction, we give a useful rephrasing of DM-irreducibility.

Lemma 3.2. A bipartite graph G = (V +, V −;E) with |V +| ≤ |V −| and |V −| ≥ 2
is DM-irreducible if and only if |ΓG(X+)| ≥ |X+|+ 1 for every nonempty X+ ⊆ V +

with |X+| < |V −|.

Proof. By the definition (2) of fG : 2V
+ → Z, the condition |ΓG(X+)| ≥ |X+|+ 1

is equivalent to fG(X+) ≥ 1. By conditions 1–3 in Theorem 2.2, the DM-irreducibility
of G is equivalent to V∞ = V when |V +| < |V −| and to V1 = V when |V +| = |V −|.
In both cases, X+

0 = V +
0 = ∅ minimizes fG, and fG(∅) = 0.

Suppose that |V +| < |V −|. Then, G is DM-irreducible if and only if X+
0 = ∅ is

a unique minimizer of fG; equivalently, fG(X+) ≥ 1 for every nonempty X+ ⊆ V +,
which satisfies |X+| ≤ |V +| < |V −|.

Suppose that |V +| = |V −| ≥ 2. Then, G is DM-irreducible if and only if fG has
exactly two minimizers X+

0 = ∅ and X+
1 = V +

1 = V +; equivalently, fG(V +) = 0 and
fG(X+) ≥ 1 for every nonempty X+ ( V +, which satisfies |X+| < |V +| = |V −|.
Note that the former condition is automatically satisfied by the latter condition as
follows. For any nonempty X+ ( V + with |X+| = |V +| − 1 (such X+ exists because
|V +| = |V −| ≥ 2), the latter condition implies
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1 ≤ fG(X+) = |ΓG(X+)| − |X+| ≤ |V −| − |X+| = 1.

We then have V − ⊇ ΓG(V +) ⊇ ΓG(X+) = V −, and hence ΓG(V +) = V −, which
leads to fG(V +) = |V −| − |V +| = 0.

The next lemma gives a reduction of the unbalanced case to the balanced case.
That is, making an unbalanced bipartite graph G DM-irreducible by adding edges
is equivalent to making the corresponding balanced bipartite graph G′ defined in
Lemma 3.3 DM-irreducible by adding edges, where the set of usable additional edges
is not changed.

Lemma 3.3. For a bipartite graph G = (V +, V −;E) with |V +| < |V −|, define a
balanced bipartite graph G′ = (V + ∪ Z+, V −;E′) as follows: let Z+ be a set of new
vertices with |Z+| = |V −|−|V +| and E′ := E∪(Z+×V −). Then, G is DM-irreducible
if and only if so is G′.

Proof. When |V −| ≤ 1, both G and G′ are DM-irreducible. Assume |V −| ≥ 2 in
what follows.

Consider the set functions fG : 2V
+ → Z and fG′ : 2V

+∪Z+ → Z defined in (2).
By Lemma 3.2, G is DM-irreducible if and only if fG(X+) ≥ 1 for every nonempty
X+ ⊆ V +, and so is G′ if and only if fG′(X

+) ≥ 1 for every nonempty X+ ( V +∪Z+.
By the definition of E′, for every X+ ⊆ V + ∪ Z+ with X+ ∩ Z+ 6= ∅, we have
ΓG′(X

+) = V −, which implies fG′(X
+) = |V −| − |X+| = |V + ∪ Z+| − |X+|. Hence,

fG′(X
+) ≥ 1 for every X+ ( V + ∪Z+ with X+ ∩Z+ 6= ∅. Since fG(X+) = fG′(X

+)
for every X+ ⊆ V +, the above two conditions for the DM-irreducibility of G and of
G′ are equivalent.

3.3. Formulation of the balanced case as Problem (FJ). We show that
the balanced case of Problem (DMI) reduces to Problem (FJ). Let G = (V +, V −;E)

be a bipartite graph with |V +| = |V −| = n ≥ 2. Define a family F ⊆ 2V
+ × 2V

−
and

a function g : F → Z≥0 by

F := { (X+, X−) | ∅ 6= X+ ⊆ V +, ∅ 6= X− ⊆ V −, E(X+, X−) = ∅ },

g(X+, X−) := max{0, |X+|+ |X−| − n+ 1}.(3)

Then, F is crossing because E(X+ ∪ Y +, X− ∩ Y −) and E(X+ ∩ Y +, X− ∪ Y −) are
included in E(X+, X−) ∪ E(Y +, Y −) for every X+, Y + ⊆ V + and X−, Y − ⊆ V −,
and g is crossing supermodular because the second part in the maximum is modular.

Claim 3.4. An edge set F ⊆ V + × V − covers g if and only if G + F is DM-
irreducible.

Proof. “Only if” part. Suppose that F ⊆ V + × V − covers g. By Lemma 3.2, to
see the DM-irreducibility of G + F , it suffices to show that |ΓG+F (X+)| ≥ |X+| + 1
for every nonempty X+ ( V +. Fix such X+, and let X− := V − \ΓG+F (X+) ⊆ V − \
ΓG(X+). If X− = ∅, then ΓG+F (X+) = V −, which implies |ΓG+F (X+)| = |V −| =
|V +| ≥ |X+| + 1. Otherwise, ∅ 6= X− ⊆ V − \ ΓG(X+), and hence (X+, X−) ∈ F .
Since F covers g and F (X+, X−) = ∅, we have 0 ≥ g(X+, X−) = max{0, |X+| +
|X−| − n+ 1}. This means 0 ≥ |X+|+ |X−| − n+ 1 = |X+| − |ΓG+F (X+)|+ 1, and
hence |ΓG+F (X+)| ≥ |X+|+ 1.

“If” part. Suppose that G + F is DM-irreducible for F ⊆ V + × V −. Then, by
Lemma 3.2, we have |ΓG+F (X+)| ≥ |X+|+ 1 for every nonempty X+ ( V +. For any
(X+, X−) ∈ F , since ΓG(X+)∩X− = ∅, we have |F (X+, X−)| ≥ |ΓG+F (X+)∩X−|.
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It is easy to see that |ΓG+F (X+) ∩ X−| ≥ |ΓG+F (X+)| − |V − \ X−| ≥ |X+| +
1 + |X−| − n, which coincides with g(X+, X−) when g(X+, X−) > 0. Thus F
covers g.

Since parallel edges have no effect on the DM-decomposition, which is defined
only by the adjacency relation (cf. the definition (2) of fG), the minimum of |F | for
covering a crossing supermodular function g defined by (3) is attained by an edge
“set” F ⊆ V + × V −. Thus, Problem (DMI) reduces to Problem (FJ). Since the
values of g are bounded by n + 1, this problem is solved in polynomial time by the
pseudopolynomial-time algorithm of Végh and Benczúr [22].

3.4. Proof of Theorem 1.1. Now we are ready to derive Theorem 1.1 from
Theorem 3.1. We postpone to Appendix A.1 the proof of Theorem 1.2 via the reduc-
tion to the balanced case and prove it via matroid intersection instead in section 4.

We show maxX τG(X ) = maxS η(S), where the maxima are taken over all proper
subpartitions X of V + and of V − and all pairwise-independent subfamilies S ⊆ F .
We first confirm maxX τG(X ) ≤ maxS η(S).

Claim 3.5. For any proper subpartition X of V + or of V −, there exists a pairwise-
independent subfamily S of F such that τG(X ) ≤ η(S).

Proof. By the symmetry, we assume that X is a proper subpartition of V + and de-
fine X− := V − \ΓG(X+) for each X+ ∈ X . Then, (X+, X−) ∈ F (X+ ∈ X ) are pair-
wise independent (since X is a subpartition of V +), and g(X+, X−) = max{0, |X+|−
|ΓG(X+)|+ 1} by (3). Hence, for S := { (X+, X−) | X+ ∈ X }, we have

τG(X ) =
∑
X+∈X

(
|X+| − |ΓG(X+)|+ 1

)
≤
∑
X+∈X

g(X+, X−) = η(S).

In order to show the equality, it suffices to show that for any pairwise-independent
subfamily S ⊆ F , there exists a proper subpartition Y of V + or of V − such that
τG(Y) ≥ η(S). Since any pair (X+, X−) ∈ F with g(X+, X−) = 0 does not con-
tribute to η(S), we assume that g(X+, X−) > 0 for every (X+, X−) ∈ S by removing
redundant pairs if necessary. We then have g(X+, X−) = |X+| + |X−| − n + 1 ≤
|X+| − |ΓG(X+)|+ 1 for every (X+, X−) ∈ S. Let S∗ := {X∗ | (X+, X−) ∈ S } for
∗ = + and −.

Case 1. When S∗ is a subpartition of V ∗ for ∗ = + or −.
By the symmetry, suppose that S+ is a subpartition of V +. If V + 6∈ S+, then

Y := S+ is a desired proper subpartition of V +. Otherwise, we have S+ = {V +}.
If S− 6= {V −}, then ΓG(X−) = ∅ and g(V +, X−) = |X−| + 1 for a unique element
X− ∈ S−, and hence it suffices to take Y := S−. Otherwise, S = {(V +, V −)}, and
hence E = E(V +, V −) = ∅. Note that g(V +, V −) = n+ 1, and recall that we assume
n ≥ 2. In this case, if we take a proper partition Y := { {u} | u ∈ V + } of V +, then

τG(Y) =
∑
u∈V +

(|{u}| − |∅|+ 1) = 2n ≥ n+ 1 = g(V +, V −) = η(S).

Case 2. When S∗ is not a subpartition of V ∗ for ∗ = + and −.
Since X+∩Y + = ∅ or X−∩Y − = ∅ for every distinct pairs (X+, X−), (Y +, Y −) ∈

S, we have |S| ≥ 3. We shall show by induction on |S| that this case reduces to Case
1 by an uncrossing procedure.
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We first observe that V + 6∈ S+ or V − 6∈ S−. Suppose to the contrary that
V + ∈ S+ and V − ∈ S−. We then have (V +, X−), (Y +, V −) ∈ S for some X− ⊆
V − and Y + ⊆ V +. If X− = V − or Y + = V +, then (V +, V −) ∈ S cannot be
independent from any other pair in S ⊆ F , which contradicts |S| ≥ 3. Otherwise
(i.e., if X− 6= V − and Y + 6= V +), since X− 6= ∅ 6= Y + by the definition of F , the
two pairs (V +, X−), (Y +, V −) ∈ F cannot be independent, a contradiction. By the
symmetry, we assume that V + 6∈ S+.

The following claim shows a successful uncrossing procedure.

Claim 3.6. If distinct X+, Y + ∈ S+ satisfy X+ ∩ Y + 6= ∅ and X+ ∪ Y + 6=
V +, then one can reduce |S| by replacing (X+, X−) and (Y +, Y −) with (X+ ∩ Y +,
X− ∪ Y −) without reducing the value of η(S).

Proof. We first see that (X+∩Y +, X−∪Y −) ∈ F . This follows from X+∩Y + 6= ∅
and E(X+ ∩ Y +, X− ∪ Y −) ⊆ E(X+, X−) ∪ E(Y +, Y −) = ∅.

Next, we confirm that (X+∩Y +, X−∪Y −) is independent from each (Z+, Z−) ∈
S \ {(X+, X−), (Y +, Y −)}. Since (Z+, Z−) is independent from both (X+, X−) and
(Y +, Y −), at least one of X+ ∩ Z+, Y + ∩ Z+, and (X− ∪ Y −) ∩ Z− is empty. This
implies that (X+ ∩ Y +) ∩ Z+ = ∅ or (X− ∪ Y −) ∩ Z− = ∅.

Finally, we show that the value of η(S) does not decrease by this replacement.
Recall that X− ∩ Y − = ∅ (since X+ ∩ Y + 6= ∅), both g(X+, X−) and g(Y +, Y −)
are positive, and X+ ∪ Y + ( V +. Thus we have the following inequalities, which
complete the proof:

g(X+ ∩ Y +, X− ∪ Y −)

≥ |X+ ∩ Y +|+ |X− ∪ Y −| − n+ 1

=
(
|X+|+ |Y +| − |X+ ∪ Y +|

)
+
(
|X−|+ |Y −|

)
− n+ 1

=
(
|X+|+ |X−| − n+ 1

)
+
(
|Y +|+ |Y −| − n+ 1

)
+
(
n− 1− |X+ ∪ Y +|

)
≥ g(X+, X−) + g(Y +, Y −).

Some pair must be uncrossed by Claim 3.6 as follows, which completes the proof.

Claim 3.7. There exist distinct X+, Y + ∈ S+ such that X+ ∩ Y + 6= ∅ and
X+ ∪ Y + 6= V +.

Proof. Suppose to the contrary that, for every distinct X+, Y + ∈ S+, we have
X+ ∩ Y + = ∅ or X+ ∪ Y + = V +. Take distinct elements X+, Y + ∈ S+ with
X+ ∩ Y + 6= ∅, and distinct pairs (Z+

1 , Z
−
1 ), (Z+

2 , Z
−
2 ) ∈ S with Z−1 ∩ Z

−
2 6= ∅ (recall

the case assumption that S∗ is not a subpartition of V ∗ for ∗ = + and −). Then,
X+ ∪ Y + = V + and Z+

1 ∩ Z
+
2 = ∅. We show that, for each i ∈ {1, 2}, exactly one of

the following statements holds:
(a) Z+

i = X+;
(b) Z+

i = Y +;
(c) Z+

i ⊇ X+4Y + := (X+ \ Y +) ∪ (Y + \X+).
Since X+ \Y + 6= ∅ 6= Y + \X+ (otherwise, X+ = V + or Y + = V +, which contradicts
that V + 6∈ S+), every possible pair of (a)–(c) leads to Z+

1 ∩ Z
+
2 6= ∅, a contradiction.

Suppose that Zi 6= X+ and Zi 6= Y +, and we derive condition (c). Since X+ ∪
Y + = V +, we assume Z+

i ∩ X+ 6= ∅ without loss of generality. This implies Z+
i ∪

X+ = V +, and hence Z+
i ⊇ V + \ X+ = Y + \ X+. Since Y + \ X+ 6= ∅, we also

have Z+
i ∩ Y + 6= ∅. We then similarly see Z+

i ⊇ X+ \ Y +, which concludes that
Z+
i ⊇ X+4Y +.
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4. Solving unbalanced case via matroid intersection. In this section, we
discuss a reduction of the unbalanced case of Problem (DMI) to matroid intersection.
The readers are referred to [9, 20] for basics on matroids and matroid intersection.

First, in section 4.1, we introduce the concept of minimal DM-irreducibility and
give a simple characterization. With the aid of the characterization, we reduce the
unbalanced case to matroid intersection in section 4.2. We also discuss the tractability
of the minimum-cost augmentation problem in section 4.3. In section 4.4, we show that
our reduction can be derived also from a general framework of covering supermodular
functions by bipartite graphs. Finally, in section 4.5, we give a proof of the min-max
duality (Theorem 1.2) with the aid of Edmonds’ matroid intersection theorem [6].

4.1. Minimal DM-irreducibility. We say that a subgraph G′ of a graph G
is spanning if G′ contains all the vertices in G (some of which may be isolated), i.e.,
if G′ is obtained just by removing some edges from G. Since the DM-irreducibility
is not violated by adding edges, a bipartite graph is DM-irreducible if and only if
it includes a minimal DM-irreducible spanning subgraph, from which removing any
edge violates the DM-irreducibility. We say that such a bipartite graph G is minimally
DM-irreducible, i.e., if G itself is DM-irreducible but is no longer after removing an
arbitrary edge.

To characterize the minimal DM-irreducibility, we use the following property
of DM-irreducible graphs, which immediately follows from the “only if” part of
Lemma 3.2 with X+ = {u}.

Corollary 4.1. If a bipartite graph G = (V +, V −;E) with |V +| ≤ |V −| and
|V −| ≥ 2 is DM-irreducible, then |ΓG({u})| ≥ 2 for every u ∈ V +.

The next lemma gives a simple characterization of the minimally DM-irreducible
unbalanced bipartite graphs, which implies their matroidal structure.

Lemma 4.2. A bipartite graph G = (V +, V −;E) with |V +| < |V −| is minimally
DM-irreducible if and only if |ΓG({u})| = 2 for every u ∈ V + and G is a forest as an
undirected graph (i.e., contains no undirected cycle).

Proof. When |V +| = 0, since G = (∅, V −; ∅) is DM-irreducible, the statement is
trivial. Suppose that |V +| ≥ 1 and hence |V −| ≥ 2.

“If” part. The DM-irreducibility follows from Claim 4.3, and the minimality is
guaranteed by Corollary 4.1.

Claim 4.3. If G is a forest such that |ΓG({u})| ≥ 2 for every u ∈ V +, then G is
DM-irreducible.

Proof. Suppose to the contrary that G is a forest such that |ΓG({u})| ≥ 2 for every
u ∈ V + but G is not DM-irreducible. Then, by Lemma 3.2, we have |ΓG(X+)| ≤
|X+| for some nonempty X+ ⊆ V +. Let X− := ΓG(X+) and X := X+ ∪ X−.
Then, G[X] contains

∑
u∈X+ |ΓG({u})| edges and |X| = |X+|+ |X−| vertices. Since∑

u∈X+ |ΓG({u})| ≥ 2|X+| ≥ |X+|+ |X−|, there exists an undirected cycle in G[X],
which is included in the forest G, a contradiction.

“Only if” part. We first see that G must be a forest.

Claim 4.4. If G is minimally DM-irreducible, then G is a forest.

Proof. By the DM-irreducibility, G has a perfect matching M ⊆ E, and every
vertex can reach some vertex in V − \ ∂−M in G(M) = G + M . Let H be the
directed graph obtained from G(M) by adding a new vertex r and an edge wr for
each w ∈ V − \∂−M . Then, every vertex is reachable to r in H, and hence H contains
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a spanning r-in-arborescence (a directed tree in which all edges are oriented toward
r), say, T , which is obtained, e.g., by the depth first search from r (where we traverse
each edge in the backward direction). Let ET ⊆ E be the set of edges which or whose
reverse edges appear in T . Then, ET forms a forest that is also DM-irreducible, and
hence ET = E by the minimality.

Combined with Corollary 4.1, G is a forest with |ΓG({u})| ≥ 2 for every u ∈ V +.
The equality in every inequality is guaranteed by Claim 4.3 and the minimality.

While Lemma 4.2 provides a complete characterization of the minimal DM-
irreducibility in the unbalanced case, it is rather difficult to do so in the balanced
case in the same manner. One can, however, characterize at least the minimal DM-
irreducibility with the minimum number of edges as follows, which is useful to show
the NP-hardness of the minimum-cost augmentation (see section 4.3).

Lemma 4.5. Let G = (V +, V −;E) be a bipartite graph with |V +| = |V −| = n ≥ 2
and |E| = 2n. Then, G is minimally DM-irreducible if and only if G is connected
and |ΓG({v})| = 2 for every v ∈ V , i.e., G is isomorphic to a Hamiltonian cycle by
ignoring the edge direction.

Proof. “If” part. Since E can be partitioned into two disjoint perfect match-
ings, G is matching covered, which is equivalent to the DM-irreducibility under the
connectivity. The minimality immediately follows from Corollary 4.1.

“Only if” part. By the DM-irreducibility, G has a perfect matching M ⊆ E,
for which G(M) = G + M is strongly connected. Hence, G must be connected. In
addition, by Corollary 4.1, we have |ΓG({v})| ≥ 2 for every v ∈ V . By the pigeonhole
principle with |E| = 2n = |V |, we conclude that |ΓG({v})| = 2 for every v ∈ V .

4.2. Reduction to matroid intersection. We are now ready to reduce the
unbalanced case to the matroid intersection problem.

First, Problem (DMI) is generally reformulated as finding a minimum-weight
minimally DM-irreducible spanning subgraph as follows. For a given bipartite graph
G = (V +, V −;E), define Ẽ := V + × V −, G̃ := (V +, V −; Ẽ), and a weight function
γ : Ẽ → R≥0 by

(4) γ(e) :=

{
0 (e ∈ E),

1 (e ∈ Ẽ \ E).

For F̃ ⊆ Ẽ, we define its weight as γ(F̃ ) :=
∑
e∈F̃ γ(e). Then, making G DM-

irreducible by adding a smallest set F ⊆ Ẽ \ E is equivalent to finding a minimum-
weight edge set F̃ ⊆ Ẽ such that the spanning subgraph (V +, V −; F̃ ) is minimally
DM-irreducible (recall that G + F is DM-irreducible if and only if G + F includes a
minimally DM-irreducible spanning subgraph).

Suppose that ` = |V +| < |V −| = n. Then, by Lemma 4.2, the set of minimally
DM-irreducible spanning subgraphs of G̃ can be identified with the family of common
independent sets of size 2|V +| = 2` in the following two matroids on Ẽ:

• the cycle matroid M̃1 = (Ẽ, Ĩ1) of G̃, i.e., F̃ ∈ Ĩ1 if and only if F̃ ⊆ Ẽ forms
a forest;

• a partition matroid M̃2 = (Ẽ, Ĩ2) such that F̃ ∈ Ĩ2 if and only if at most two
edges in F̃ ⊆ Ẽ leave each u ∈ V +.

Thus the unbalanced case reduces to finding a minimum-weight common independent
set of size 2` in the two matroids on Ẽ.
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We show that this can be achieved by finding a maximum-cardinality common
independent set in the restrictions Mi = (E, Ii) of M̃i to E ⊆ Ẽ for i = 1, 2,
which completes a reduction to matroid intersection. The following claim gives a key
observation.

Claim 4.6. For any F ∈ Ĩ1 ∩ Ĩ2, there exists F̃ ∈ Ĩ1 ∩ Ĩ2 with |F̃ | = 2` and
F ⊆ F̃ . Moreover, such F̃ can be found in O(n) time.

Proof. Since F is a common independent set in M̃1 and M̃2, the spanning sub-
graph H := (V +, V −;F ) of G̃ is a forest such that |ΓH({u})| ≤ 2 for every u ∈ V +,
and hence |F | ≤ 2`. It suffices to show that, when |F | < 2`, there exists an edge
e ∈ Ẽ \ F such that F ∪ {e} ∈ Ĩ1 ∩ Ĩ2.

Suppose that |F | < 2`. Then there exists a vertex u ∈ V + such that |ΓH({u})| ≤ 1.
Let Hu = (V +

u , V
−
u ;Fu) be the connected component of H that contains u. Since Hu

is a tree such that |ΓH({u})| ≤ 2 for every u′ ∈ V +
u \ {u}, we have

|V +
u |+ |V −u | − 1 = |Fu| =

∑
u′∈V +

u

|ΓH(u′)| ≤ 2|V +
u | − 1,

which implies |V −u | ≤ |V +
u | ≤ |V +| < |V −|. Hence, there exists a vertex w ∈ V − \V −u ,

for which the edge e = uw ∈ Ẽ \F can be added to H so that the resulting spanning
graph remains a forest with the degree constraint, i.e., F ∪ {e} ∈ Ĩ1 ∩ Ĩ2.

One can add such edges e ∈ Ẽ \F simultaneously by computing all the connected
components of H in advance, which requires O(n) time in total.

Let γ∗ := min{ γ(F̃ ) | F̃ ∈ Ĩ1 ∩ Ĩ2 and |F̃ | = 2` } and q := 2`− γ∗.
Claim 4.7. The maximum cardinality of a common independent set in M1 and

M2 is q.

Proof. By the definition (4) of the weight function γ, for any F̃ ∈ Ĩ1 ∩ Ĩ2 with
|F̃ | = 2` and γ(F̃ ) = γ∗, the restriction F := F̃ ∩ E ∈ I1 ∩ I2 satisfies |F | =
|F̃ |−γ(F̃ ) = 2`−γ∗ = q. To the contrary, by Claim 4.6, for any F ∈ I1∩I2 ⊆ Ĩ1∩Ĩ2,
there exists F̃ ∈ Ĩ1 ∩ Ĩ2 with |F̃ | = 2` and F ⊆ F̃ , which implies |F | ≤ 2`− γ(F̃ ) ≤
2`− γ∗ = q.

Finally, we confirm that a minimum-weight common independent set F̃ ∈ Ĩ1 ∩ Ĩ2
is obtained from a maximum-cardinality common independent set F ∈ I1 ∩ I2, i.e.,
|F | = q. By Claim 4.6, one can find F̃ ∈ Ĩ1 ∩ Ĩ2 with |F̃ | = 2` and F ⊆ F̃ , which
implies γ(F̃ ) ≤ 2`− |F | = 2`− q = γ∗. By the minimality of γ∗, indeed γ(F̃ ) = γ∗.

In the resulting matroid intersection instance, the ground set is of size |E| = m
and the optimal value (i.e., the maximum size of a common independent set) is at
most 2|V +| = O(`). With the aid of a fast “graphic” matroid intersection algorithm
due to Gabow and Xu [13, 14], one can solve it in O(m

√
` log `) time in general and

in O(m
√
`) time when m = Ω(`1+ε) for some ε > 0.

While M1 is the cycle matroid of G and hence is indeed graphic, the other M2, a
partition matroid such that each upper bound is 2, is not graphic in general. To use
the graphic matroid intersection algorithm, we duplicate the ground set E by creating
a copy e′ = uw of each element e = uw ∈ E and let E′ be the set of those copies.
Let M′1 = (E ∪ E′, I ′1) be the cycle matroid of the duplicated graph with the edge
set E ∪ E′, in which each e ∈ E and its copy e′ ∈ E′ are parallel (i.e., {e, e′} 6∈ I ′1).
Let M′2 = (E ∪ E′, I ′2) be the partition matroid such that, for two subsets F ⊆ E
and F ′ ⊆ E′, we have F ∪ F ′ ∈ I ′2 if and only if F and F ′, respectively, have at most
one edge leaving each u ∈ V +. Since each upper bound is 1, this M′2 has a graphic
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representation as disconnected parallel edges according to the partition of E ∪ E′.
The intersection of these two graphic matroids M′1 and M′2 is essentially the same
as the intersection of M1 and M2 by identifying each original element e ∈ E and its
copy e′ ∈ E′, where recall that {e, e′} 6∈ I ′1.

4.3. Minimum-cost augmentation. Our reduction technique can be utilized
even when, for each potential edge e ∈ Ẽ \E, the addition of e gives rise to a cost of
c(e) ∈ R>0 (note that, when c(e) ≤ 0 for some e, we can add such e to G in advance).
We just need to modify the definition (4) of the weight function γ : Ẽ → R≥0 so

that γ(e) = c(e) for each e ∈ Ẽ \ E. Note that the original minimum-cardinality
augmentation problem is regarded as the case when c(e) = 1 for all e ∈ Ẽ \ E. For
this modified weight function γ, we can no longer obtain a minimum-weight common
independent set of size 2` by finding a maximum-cardinality common independent set
in the restricted matroids, but one can do so in polynomial time by using weighted
matroid intersection algorithms.

While we can reduce the ground set Ẽ = V +×V − of two matroids to the original
edge set E in the minimum-cardinality augmentation case, we here need to use Ẽ itself,
whose size m̃ := `n no longer depends on the number m of original edges. In general
(when the cost values are arbitrary), a weighted matroid intersection algorithm [1] for
a partition matroid and a graphic matroid leads to a bound on the computational time
by O(m̃n+n2`+n`2) = O(n2`). Furthermore, when the cost values are integers that
are bounded by a constant, weighted matroid intersection can be solved by solving
unweighted instances repeatedly in the same asymptotic running time bound [15].
Hence, by using the Gabow–Xu algorithm [13, 14] for unweighted graphic matroid
intersection, one can obtain a better bound O(m̃

√
`) = O(n`1.5), where note that

m̃ = `n = Ω(`2).
In contrast, the minimum-cost augmentation is NP-hard in the balanced case

(note that it was already shown in [7] for the strong connectivity augmentation,
which is equivalent to making a perfectly matchable balanced bipartite graph DM-
irreducible as seen in section 2.3). Consider testing whether a given bipartite graph
G1 = (V +, V −;E1) with |V +| = |V −| = n ≥ 2 contains an undirected Hamiltonian
cycle, which is NP-hard [16]. Define G := (V +, V −; ∅), Ẽ := V +×V −, E2 := Ẽ \E1,
and c : Ẽ → R>0 by c(e) := i for each e ∈ Ei (i ∈ {1, 2}). Then, by Lemma 4.5,
G1 contains an undirected Hamiltonian cycle if and only if one can make G DM-
irreducible by adding edges with the total cost at most 2n.

4.4. Connection to supermodular covering by bipartite graphs. We can
derive a matroid intersection formulation also from a general framework of covering
supermodular functions by bipartite graphs (cf. [9, section 13.4]).

For a finite set S, a set function g : 2S → Z≥0 is said to be intersecting supermod-
ular if

g(X ∪ Y ) + g(X ∩ Y ) ≥ g(X) + g(Y )

holds for every pair of subsets X,Y ⊆ S with X ∩ Y 6= ∅. In addition, g is element-
subadditive if

g(X) + g({e}) ≥ g(X ∪ {e})

holds for every pair of a subset X ⊆ S and an element e ∈ S \X.
Let G = (V +, V −;E) be a bipartite graph. We say that an edge set F ⊆ E

covers a set function g : 2V
+ → Z≥0 if |ΓF (X+)| ≥ g(X+) for every X+ ⊆ V +, where

we define ΓF (X+) := {w | ∃e = uw ∈ F : u ∈ X+ }. The following theorem gives
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a matroid intersection formulation of covering an element-subadditive intersecting
supermodular function by a bipartite graph.

Theorem 4.8 (Frank [9, Theorem 13.4.11]). Let G = (V +, V −;E) be a bipartite

graph and g : 2V
+ → Z≥0 an element-subadditive intersecting supermodular function.

If E covers g, then all the minimal edge sets that cover g form a family of all common
independent sets of size

∑
u∈V + g({u}) in two matroids on E.

In order to apply Theorem 4.8 to our setting, we define a set function g : 2V
+ →

Z≥0 by

g(X+) :=

{
0 (X+ = ∅),
|X+|+ 1 (otherwise).

As an easy observation, this g is indeed intersecting supermodular (the equality always
holds) and element-subadditive (since g({u}) = 2 for every u ∈ V +). In addition,
when ` = |V +| < |V −|, Lemma 3.2 implies that an edge set F̃ ⊆ Ẽ = V + × V −
covers g if and only if the spanning subgraph (V +, V −; F̃ ) of G̃ = (V +, V −; Ẽ) is
DM-irreducible. Hence, by Theorem 4.8 (note that Ẽ covers g), all the minimally
DM-irreducible spanning subgraphs of G̃ form a family of all common independent
sets of size 2` in two matroids on Ẽ (which indeed coincide with M̃1 and M̃2 defined
in section 4.2).

4.5. Min-max duality. In this section, we prove the min-max duality (The-
orem 1.2) through Edmonds’ matroid intersection theorem [6]. We here adopt the
definition of matroids by the rank functions.

Theorem 4.9 (Edmonds [6, Theorem (69)]). Let M1 = (E, ρ1) and M2 =
(E, ρ2) be two matroids on the same ground set E. Then, the maximum cardinality
of a common independent set in M1 and M2 is equal to the minimum value of

ρ1(Z) + ρ2(E \ Z),

taken over all subsets Z ⊆ E.

For a bipartite graph G = (V +, V −;E) with ` = |V +| < |V −| = n, let M1 =
(E, ρ1) and M2 = (E, ρ2) be the two matroids defined in section 4.2, i.e., M1 is the
cycle matroid of G and M2 is a partition matroid. We denote by q the maximum
cardinality of a common independent set in M1 and M2 (cf. Claim 4.7 in section 4.2).

We now start the proof of Theorem 1.2, i.e., opt(G) = maxX+ τG(X+), where
the maximum is taken over all subpartitions X+ of V +. Since we have already seen
opt(G) = γ∗ = 2` − q in section 4.2 and q = minZ⊆E (ρ1(Z) + ρ2(E \ Z)) by Theo-
rem 4.9, it suffices to confirm

min
Z⊆E

(ρ1(Z) + ρ2(E \ Z)) = 2`−max
X+

τG(X+),

which is completed by Claims 4.10 and 4.11.

Claim 4.10. For any subpartition X+ of V +, there exists a subset Z ⊆ E with

ρ1(Z) + ρ2(E \ Z) ≤ 2`− τG(X+).

Proof. Let X+ = {X+
1 , X

+
2 , . . . , X

+
k } be a subpartition of V +. For each i ∈ [k],

define X−i := ΓG(X+
i ) and Xi := X+

i ∪ X
−
i . If X−i ∩ X

−
j 6= ∅ for some distinct

i, j ∈ [k], then replacing X+
i and X+

j with X+
i ∪X

+
j does not decrease the value of

τG(X+) because
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|ΓG(X+
i ∪X

+
j )| = |X−i ∪X

−
j | = |X

−
i |+ |X

−
j | − |X

−
i ∩X

−
j | ≤ |X

−
i |+ |X

−
j | − 1.

Hence, we can assume that Xi ∩Xj = ∅ for every distinct i, j ∈ [k].
Let Z ⊆ E be the set of edges induced by X :=

⋃
i∈[k]Xi. Then, ρ1(Z) ≤∑k

i=1 (|Xi| − 1) and ρ2(E \ Z) ≤ 2|X+
0 |, where X+

0 := V + \X+. Thus we have

ρ1(Z) + ρ2(E \ Z) ≤
k∑
i=1

(|Xi| − 1) + 2|X+
0 |

=

k∑
i=1

(
|X+

i |+ |X
−
i | − 1

)
+ 2|X+

0 |

= 2

k∑
i=0

|X+
i | −

k∑
i=1

(
|X+

i | − |X
−
i |+ 1

)
= 2`− τG(X+).

Claim 4.11. For any subset Z ⊆ E, there exists a subpartition X+ of V + with

ρ1(Z) + ρ2(E \ Z) ≥ 2`− τG(X+).

Proof. For an edge set Z ⊆ E, let E1 := Z, E2 := E \Z, and Hi := (V +, V −;Ei)
(i = 1, 2). We first show that we can assume the following two conditions:

• each vertex u ∈ V + is isolated in H1 or in H2;
• if exactly one edge e ∈ E leaves u ∈ V +, then e ∈ E1.

To see the first condition, suppose to the contrary that, for some u ∈ V +, at least
one edge leaves u both in H1 and in H2. Then, by transferring all the edges leaving u
in H1 from E1 to E2, the rank ρ1(E1) decreases by at least 1 (since u will be isolated
in H1) and ρ2(E2) increases by at most 1 (since H2 already has at least one edge
leaving u), and hence the value of ρ1(Z) + ρ2(E \ Z) does not increase.

To see the second condition, suppose to the contrary that, for some u ∈ V +,
exactly one edge e ∈ E leaves u ∈ V + and e ∈ E2. Then, by transferring e from E2

to E1, the rank ρ1(E1) increases by 1 (since u is isolated in H1) and ρ2(E2) decreases
by 1 (since only e leaves u in H2), and hence the value of ρ1(Z) + ρ2(E \Z) does not
change.

Let Y + ⊆ V + be the set of vertices that are not isolated in H2, and X+ :=
{X+

1 , X
+
2 , . . . , X

+
k } the partition of X+ := V + \Y + according to the connected com-

ponents of H1 − Y + = G− Y +. Then we have

2`− τG(X+) = 2|V +| −
k∑
i=1

(
|X+

i | − |ΓG(X+
i )|+ 1

)
=

k∑
i=1

(
|X+

i |+ |ΓG(X+
i )| − 1

)
+ 2(|V +| − |X+|)

=

k∑
i=1

(
|X+

i |+ |ΓH1(X+
i )| − 1

)
+ 2|Y +|

= ρ1(Z) + ρ2(E \ Z).

5. Algorithm for balanced case. In this section, we present a direct algorithm
for Problem (DMI) that only requires O(nm) time, where the input bipartite graph
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G = (V +, V −;E) is assumed to be balanced with |V +| = |V −| = n and |E| = m.
It should be remarked that our algorithm can solve the unbalanced case through a
reduction to the balanced case shown in section 3.2 with the same computational time
bound (see Appendix A.2).

We describe our algorithm in section 5.1. Next, in section 5.2, we show the
optimality of the output, which also gives an alternative, constructive proof of the
min-max duality (Theorem 1.1). Finally, we analyze the running time of our algorithm
in section 5.3.

5.1. Algorithm description. We first compute the DM-decomposition of G,
say, (V0;V1, V2, . . . , Vk;V∞). If V0 = V∞ = ∅, then G has a perfect matching M ⊆ E.
In this case, it suffices to find a minimum number of additional edges to make the
auxiliary graph G(M) = G + M strongly connected (as seen in section 2.3), which
can be done in linear time by Theorem 2.1.

Otherwise, since |V +| = |V −|, both V0 and V∞ are nonempty, and hence G has
no perfect matching. A possible strategy is to make G perfectly matchable by adding
a perfect matching N ⊆ (V + \ ∂+M) × (V − \ ∂−M) ⊆ (V + × V −) \ E between the
vertices exposed by some maximum matching M ⊆ E in G. The resulting graph
G̃ := G+N has a perfect matching M̃ := M ∪N , and hence a minimum number of
further additional edges to make G̃ DM-irreducible can be found in linear time. Thus
we obtain a feasible solution, which may fail to be optimal.

We adopt a maximum matching M ⊆ E in G whose restrictions to G[V0] and
to G[V∞] are both eligible perfect matchings defined as follows. This modification
enables us to guarantee the optimality of the output with the aid of the weak duality
(Lemma 5.2).

Definition 5.1. Let H = (U+, U−;E) be a DM-irreducible unbalanced bipartite
graph and M ⊆ E a perfect matching in H. When |U+| < |U−|, we say that M is
eligible if there exists a subpartition X− of U− such that τH(X−) = |U−| − |U+| +
s(H(M)). Similarly, when |U+| > |U−|, we say so if there is a subpartition X+ of
U+ such that τH(X+) = |U+| − |U−|+ t(H(M)).

Note that this definition is symmetric, i.e., the eligibility of M when |U+| > |U−|
is equivalent to the eligibility of M in the interchanged bipartite graph (U−, U+;E).

Procedure EPM for finding an eligible perfect matching will be described in sec-
tion 6.1. A formal description of the entire algorithm is now given as follows.

Algorithm DMI(G).
Input: A bipartite graph G = (V +, V −;E) with |V +| = |V −| = n.
Output: An edge set F ⊆ (V + × V −) \ E with |F | = opt(G) such that G + F is

DM-irreducible.
Step 0. Compute the DM-decomposition (V0;V1, V2, . . . , Vk;V∞) of G.
Step 1. If V0 = V∞ = ∅, then set N ← ∅ and go to Step 4.
Step 2. Otherwise (i.e., if V0 6= ∅ 6= V∞), find eligible perfect matchings M0 ⊆

E ∩ (V +
0 × V

−
0 ) in G[V0] and M∞ ⊆ E ∩ (V +

∞ × V −∞) in G[V∞] by Procedure
EPM.

Step 3. Take an arbitrary perfect matching N ⊆ (V +
0 \ ∂+M0)× (V −∞ \ ∂−M∞).

Step 4. Let G̃ := G + N , which has a perfect matching M̃ ⊆ E ∪ N . Using the
Eswaran–Tarjan algorithm, find an edge set F̃ ⊆ (V + × V −) \ (E ∪N) with
|F̃ | = opt(G̃) such that G̃(M̃) + F̃ is strongly connected, and return F ←
N ∪ F̃ .
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5.2. Optimality. In this section, we show that the output F of Algorithm
DMI(G) is an optimal solution to Problem (DMI). We first see the weak duality
part of Theorem 1.1, i.e., opt(G) ≥ maxX τG(X ). We then construct a proper sub-
partition X of V + or of V − such that |F | = τG(X ), which implies that F and X
attain the minimum and the maximum, respectively. The construction is presented
separately for two cases: when G has a perfect matching and when not. Note that
the first case is not necessary for the optimality proof (recall that it reduces to the
strong connectivity augmentation in section 2.3), but it is helpful to a discussion of
the second case.

Weak duality.

Lemma 5.2. Let G = (V +, V −;E) be a bipartite graph with |V +| = |V −|. Then,
for any edge set F ⊆ (V +×V −)\E such that G+F is DM-irreducible and any proper
subpartition X of V + or of V −, we have |F | ≥ τG(X ).

Proof. Fix an edge set F ⊆ (V + × V −) \ E such that G + F is DM-irreducible
and a proper subpartition X of V +. By Lemma 3.2, the DM-irreducibility of G+ F
implies that |ΓG+F (X+)| ≥ |X+|+ 1 for every X+ ∈ X . Hence,

|F (X+, V − \ ΓG(X+))| ≥ |ΓG+F (X+)| − |ΓG(X+)| ≥ |X+| − |ΓG(X+)|+ 1,

where F (Y +, Y −) := F ∩ (Y + × Y −) denotes the restriction of F to Y + × Y − for
Y + ⊆ V + and Y − ⊆ V −. For every distinct X+

1 , X
+
2 ∈ X , since X+

1 ∩X
+
2 = ∅ implies

F (X+
1 , V

− \ ΓG(X+
1 )) ∩ F (X+

2 , V
− \ ΓG(X+

2 )) = ∅, we see

|F | ≥
∑
X+∈X

|F (X+, V − \ ΓG(X+))| ≥
∑
X+∈X

(
|X+| − |ΓG(X+)|+ 1

)
= τG(X ).

We can handle the proper subpartitions of V − in the same way by considering the
interchanged bipartite graph (V −, V +;E) and the set F of reverse edges, and thus
we are done.

Perfectly matchable case. Suppose that the input graph G has a perfect
matching M ⊆ E. Then, Algorithm DMI(G) just finds a minimum-cardinality set
F of additional edges to make G(M) strongly connected in Step 4. If G(M) itself is
strongly connected, then X := ∅ is a desired proper subpartition of V + (and of V −),
i.e., τG(X ) = 0 = |F |.

Otherwise, |F | = max{s(G(M)), t(G(M))} by Theorem 2.1. Define two subpar-
titions X− of V − and X+ of V + as follows (see also Figure 1):

X− := {X− | G(M)[X] is a source component of G(M) },

X+ := {X+ | G(M)[X] is a sink component of G(M) },

where we recall that X+ := X ∩ V + and X− := X ∩ V − for X ⊆ V . Since G(M) is
not strongly connected, we have X− 6= {V −} and X+ 6= {V +}. We show that one of
X− and X+ is a desired proper subpartition by confirming τG(X−) = s(G(M)) and
τG(X+) = t(G(M)).

Since any edge in M ∪M is contained in some strongly connected component of
G(M), distinct strongly connected components are connected only by edges in E\M ⊆
V + × V −. Hence, for each source component G(M)[X] of G(M), since no edge can
enter X in G(M), we have ΓG(X−) = X+, which implies |ΓG(X−)| = |X+| = |X−|.
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Fig. 1. Proper subpartitions X− (white boxes) and X+ (gray boxes) with τG(X−) = s(G(M))
and τG(X+) = t(G(M)) when G has a perfect matching M , e.g., the set of all horizontal edges.

Fig. 2. Illustration of the general case, where the maximum matching M is the set of all
horizontal edges, the perfect matching N between the exposed vertices is drawn by dashed lines,
and the white boxes represent the proper subpartition X− = X−∞ ∪ X−∗ of V − with τG(X−) =
|V −∞ | − |V +

∞|+ s(G̃(M̃)).

Similarly, for each sink component G(M)[X] of G(M), we have |ΓG(X+)| = |X−| =
|X+|. Thus we see

τG(X−) =
∑

X−∈X−
1 = |X−| = s(G(M)) and τG(X+) =

∑
X+∈X+

1 = |X+| = t(G(M)).

General case. Suppose that the input graph G has no perfect matching; equiv-
alently, V0 6= ∅ 6= V∞ in the DM-decomposition (V0;V1, V2, . . . , Vk;V∞) of G. In
this case, our algorithm finds a maximum matching M ⊆ E in G whose restrictions
M0 to G[V0] and M∞ to G[V∞] are both eligible perfect matchings in Steps 0 and
2 (cf. condition 5 in Theorem 2.2 and the computation of the DM-decomposition
in section 2.2), adds to G a perfect matching N ⊆ (V + \ ∂+M) × (V − \ ∂−M) be-
tween the exposed vertices in Step 3 (see Figure 2), and finds an optimal solution
F̃ ⊆ (V + × V −) \ (E ∪N) to G̃ = G+N in Step 4.

If n = 1, then E = ∅, N = V +×V −, and F̃ = ∅. Then the output F = V +×V −
is a unique feasible solution and hence optimal. In what follows, we assume n ≥ 2.
Then, as done above, it suffices to construct two proper subpartitions X− of V − and
X+ of V + such that max{τG(X−), τG(X+)} = |F | = |N |+ |F̃ |.
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Note that |N | = n − |M | = |V +
0 | − |V

−
0 | = |V −∞ | − |V +

∞ |. The following claim
implies |F̃ | = max{s(G̃(M̃)), t(G̃(M̃))} by Theorem 2.1, and hence

(5) |F | = max{|V −∞ | − |V +
∞ |+ s(G̃(M̃)), |V +

0 | − |V
−
0 |+ t(G̃(M̃))},

where M̃ := M ∪N is a perfect matching in G̃.

Claim 5.3. G̃(M̃) is not strongly connected.

Proof. By Observation 2.3, each exposed vertex u ∈ V + \ ∂+M forms a source
component of G(M) which is reachable only to some vertices in V0, and each w ∈
V − \ ∂−M forms a sink component of G(M) which is reachable only from some
vertices in V∞. Since each edge uw ∈ N connects such source and sink components
one by one, the two end vertices u ∈ V + and w ∈ V − form a new strongly connected
component in G̃(M̃) = G(M) + (N ∪N), which is reachable only to some vertices in
V0 and only from some in V∞. Recall that |V +| = |V −| = n ≥ 2, and hence G̃(M̃)
has at least two distinct strongly connected components.

In what follows, we shall construct a subpartition X− of V − such that τG(X−) =
|V −∞ | − |V +

∞ | + s(G̃(M̃)) (see also Figure 2). By the symmetry, one can obtain a
subpartition X+ of V + such that τG(X+) = |V +

0 | − |V
−
0 |+ t(G̃(M̃)) in the same way

(consider the interchanged bipartite graph (V −, V +;E)). By (5), unless X− = {V −}
or X+ = {V +}, these two subpartitions are desired ones.

Since no edge enters V∞ in G as well as in G(M) (see Observation 2.3) and M∞
is an eligible perfect matching in G∞ := G[V∞], there exists a subpartition X−∞ of V −∞
such that τG(X−∞) = τG∞(X−∞) = |V −∞ | − |V +

∞ |+ s(G∞(M∞)). Define

X−∗ := {X− | G(M)[X] is a source component of G(M) and X ∩ (V0 ∪ V∞) = ∅ },

and X− := X−∞ ∪ X−∗ . When X− 6= {V −}, the following claim completes the proof.

Claim 5.4. τG(X−) = |V −∞ | − |V +
∞ |+ s(G̃(M̃)).

Proof. We first see τG(X−) = |V −∞ | − |V +
∞ |+ s(G(M)− V0). Since no edge enters

V∞ in G(M), the source components of G(M) − V0 are partitioned into those of
G(M)[V∞] = G∞(M∞) and those of G(M) disjoint from V0 ∪ V∞. Similarly to
section 2.3, we see τG(X−∗ ) = |X−∗ |, and hence τG(X−) = τG(X−∞) + τG(X−∗ ) =
|V −∞ | − |V +

∞ |+ s(G(M)− V0).
Thus it suffices to show s(G̃(M̃)) = s(G(M) − V0). Since no edge leaves V0

in G(M) and each source component of G(M)[V0] is a single exposed vertex u ∈
V +
0 \∂+M with no entering edge, the source components of G(M) are partitioned into

those of G(M) − V0 and of G(M)[V0]. Hence, we have s(G(M) − V0) = s(G(M)) −
s(G(M)[V0]). Each exposed vertex u ∈ V +

0 \ ∂+M is connected to some exposed
vertex w ∈ V −∞ \ ∂−M by two edges in N ∪ N . As seen in the proof of Claim 5.3,
these two vertices u and w form a new strongly connected component in G̃(M̃),
which is no longer a source component unless w is isolated in G(M), i.e., the sink
component G∞(M∞)[{w}] is also a source component of G(M)−V0. Hence, whether
some exposed vertices w ∈ V −∞ \ ∂−M are isolated or not, by adding N ∪ N to
G(M), the number of source components decreases exactly by s(G(M)[V0]). Thus,
s(G̃(M̃)) = s(G(M))− s(G(M)[V0]) = s(G(M)− V0).

Finally, we consider the case of X− = {V −}. Since τ(X−∞) = |V −∞ | − |V +
∞ | +

s(G∞(M∞)) > 0, we have X−∞ = {V −} and X−∗ = ∅. In this case, V −∞ = V −

and V −0 = ∅. Hence, each vertex u ∈ V +
0 is isolated in G(M) and is contained

in a new sink component of G̃(M̃) = G(M) + (N ∪ N) consisting of two vertices.
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Since the DM-decomposition of G has no balanced component in this case, we have
t(G̃(M̃)) = |V +

0 | = n− |M | ≥ 1, which leads to

|V +
0 |− |V

−
0 |+ t(G̃(M̃)) = 2(n−|M |) ≥ n−|M |+1 ≥ |V −|− |ΓG(V −)|+1 = τG(X−∞).

Then the maximum in (5) is attained by the latter term, which is equal to 2|V +
0 |. Thus,

for a subpartition X+ := { {u} | u ∈ V +
0 } 6= {V +} of V +, we have τG(X+) = |F |.

5.3. Running time analysis. In this section, we show that Algorithm DMI(G)
runs in O(nm) time, where recall that n := |V +| = |V −| and m := |E|.

In Step 0, we find a maximum matching M in G and compute the strongly
connected components of the auxiliary graph G(M) (see section 2.2). The former can
be done in O(nm) time even by a näıve augmenting-path algorithm (see, e.g., [20,
section 16.3]) and the latter in O(n+m) time with the aid of the depth first search.
As shown in section 6.3, it takes O(nm) time to find an eligible perfect matching,
which is performed twice in Step 2. Step 3 requires O(n) time, and one can perform
Step 4 in O(n + m) time by Theorem 2.1 (note that a perfect matching M̃ in G̃ is
obtained by combining the perfect matching N ∪M0 ∪M∞ in G[V0 ∪ V∞] with a
perfect matching M∗ in G− (V0 ∪ V∞), which is included in the maximum matching
M in G found in Step 0). Thus the entire running time is bounded by O(nm).

6. Finding eligible perfect matchings. In this section, we show a procedure
for finding an eligible perfect matching in a DM-irreducible unbalanced bipartite graph
H = (U+, U−;E), which plays a key role in Algorithm DMI. Since the definition of
eligibility is symmetric (see Definition 5.1), we assume |U+| < |U−| in this section.

We describe an algorithm for finding an eligible perfect matching in section 6.1.
Sections 6.2 and 6.3 are devoted to its correctness proof and complexity analysis.

6.1. Algorithm description. To describe the procedure, we introduce an aug-
mented auxiliary graph.

Definition 6.1. For a perfect matching M ⊆ E in a DM-irreducible bipartite
graph H = (U+, U−;E) with |U+| < |U−|, an augmented auxiliary graph Ĥ(M) is
constructed from H(M) = H + M as follows (see also Figure 3). Let S− ⊆ U− be
a vertex set obtained by collecting one vertex in U− from each source component of

Fig. 3. An augmented auxiliary graph Ĥ(M), where the gray vertices are exposed by M .
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H(M), and hence |S−| = s(H(M)). Add to H(M) a new vertex r and an edge rv for
each v ∈ S−. That is, Ĥ(M) = (U ∪ {r}, E ∪M ∪ Er), where Er := {r} × S−.

Note that since there may be several possible choices of S−, an augmented aux-
iliary graph Ĥ(M) is not uniquely determined in general.

The procedure for finding an eligible perfect matching is now given as follows.
Procedure EPM(H).

Input: A DM-irreducible bipartite graph H = (U+, U−;E) with |U+| < |U−|.
Output: An eligible perfect matching M ⊆ E in H.
Step 0. Take an arbitrary perfect matching M ⊆ E in H, and set W ← U− \ ∂−M .
Step 1. Construct an augmented auxiliary graph Ĥ(M) = (U ∪ {r}, E ∪M ∪ Er),

and set Ĥ = (Û , Ê)← Ĥ(M).
Step 2. While W 6= ∅, do the following.

Step 2.1. Take an exposed vertex w ∈W , and update W ←W \ {w}.
Step 2.2. Find two edge-disjoint r–w paths in Ĥ, or certify the nonexistence of

such paths.
Step 2.3. If Ĥ has two edge-disjoint r–w paths, then let P be one of those r–w

paths, and update M ← (M ∪ E(P )) \ M(P ) and Ê ← (Ê ∪ E(P )) \
(M(P ) ∪ {e1}) (see Figure 4), where we denote by E(P ) ⊆ E the set of
edges that appear in P , by M(P ) ⊆ M the set of edges whose reverse
edges appear in P , and by e1 ∈ Er the first edge of P .

Step 3. Return the current perfect matching M .
The following lemma gives an important observation on Procedure EPM, whose

proof is left to section 6.2

Lemma 6.2. At the beginning of each iteration of Step 2, Ĥ = (Û , Ê) is an aug-
mented auxiliary graph Ĥ(M), which does not have two edge-disjoint r–w paths for
any w ∈ (U− \ ∂−M) \W .

6.2. Correctness of EPM. We first give a proof of Lemma 6.2 and then prove
that Procedure EPM indeed outputs an eligible perfect matching.

Proof of Lemma 6.2. We first see that Ĥ is an augmented auxiliary graph with
respect to M .

Fig. 4. How Ĥ is updated in Step 2.3 of Procedure EPM along the bold r–w path P .
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Claim 6.3. After Step 1, Ĥ = (Û , Ê) is always an augmented auxiliary graph
Ĥ(M).

Proof. By Step 1, Ĥ is initialized as Ĥ(M). We show that if the current perfect
matching M and an augmented auxiliary graph Ĥ = Ĥ(M) = (U ∪{r}, E ∪M ∪Er)
are updated to M ′ and Ĥ ′, respectively, in Step 2.3, then Ĥ ′ is an augmented auxiliary
graph Ĥ(M ′).

Let v ∈ U− \ ∂−M ′ be the new exposed vertex, and then e1 = rv ∈ Er. Since
H(M ′) = H+M ′ is obtained from H(M) = H+M by adding the edges in E(P ) and
removing those in M(P ), it suffices to show that the source components of H(M ′)
coincide with those of H(M) except for that containing v.

Let X ⊆ U be the vertex set of a source component of H(M) with v 6∈ X. Then,
since no edge enters X in Ĥ except for one in Er \ {e1}, the r–w path P starting e1
is disjoint from X. Hence, H(M ′)[X] = H(M)[X] remains a source component in
H(M ′) as it is in H(M).

Suppose to the contrary that H(M ′) has another source component H(M ′)[Y ].
If P is disjoint from Y , then H(M)[Y ] = H(M ′)[Y ] is a source component of H(M),
and hence v ∈ Y , which, however, contradicts that P is disjoint from Y . Since r 6∈ Y ,
the r–w path P must enter Y at least once. If P leaves Y using an edge e ∈ E ∪M ,
then the reverse edge ē enters Y in H(M ′), which contradicts that H(M ′)[Y ] is a
source component. Thus P enters Y exactly once, and Y must contain the end w
of P .

Since Ĥ has two edge-disjoint r–w paths, Y has an entering edge e in Ĥ that
does not appear in P . If e ∈ E ∪M , then e remains in H(M ′) as an edge entering
Y , a contradiction. Otherwise, e ∈ Er \ {e1}. This, however, contradicts that Y is
disjoint from any source component of H(M) that does not contain v.

When the procedure reaches Step 2 for the first time, we have W = U− \ ∂−M ,
and hence there is no choice of w ∈ (U− \ ∂−M) \W = ∅. We inductively show that,
at the beginning of each iteration of Step 2, Ĥ does not have two edge-disjoint r–w
paths for any w ∈ (U− \ ∂−M) \W . That is, we prove that if this property holds
at the beginning of some iteration of Step 2, then it does at the end of the iteration
(equivalently, at the beginning of the next iteration).

Let w∗ ∈ W be the exposed vertex chosen in Step 2.1, and W ′ := W \ {w∗}. If
Ĥ does not have two edge-disjoint r–w∗ paths, then M and Ĥ are not updated. In
this case, combining with the induction hypothesis, we see that Ĥ does not have two
edge-disjoint r–w paths for any w ∈ ((U− \ ∂−M) \W ) ∪ {w∗} = (U− \ ∂−M) \W ′.

Suppose that Ĥ = (Û , Ê) has two edge-disjoint r–w∗ paths, and M and Ĥ are
updated to M ′ and Ĥ ′, respectively, in Step 2.3. Let v∗ ∈ U− \ ∂−M ′ be the new
exposed vertex, i.e., e1 = rv∗ ∈ Er. We then see (U− \ ∂−M ′) \W ′ = ((U− \ ∂−M) \
W ) ∪ {v∗} and show that Ĥ ′ does not have two edge-disjoint r–w paths, separately
for w = v∗ and for w ∈ (U− \ ∂−M) \W .

Claim 6.4. Ĥ ′ does not have two edge-disjoint r–v∗ paths.

Proof. Since v∗ is in a source component of H(M) that does not contain w∗, its
vertex set X ⊆ U satisfies that v∗ ∈ X, w∗ 6∈ X, and X has no entering edge in
H(M). Hence, the r–w∗ path P leaves X exactly once through an edge e ∈ E ∪M .
If e ∈ M , then the reverse edge ē ∈ M ⊆ E enters X in H(M), a contradiction.
Otherwise, e ∈ E, which implies that X has a unique entering edge ē ∈ M ′ in Ĥ ′.
Then, v∗ is not reachable from r in Ĥ ′−ē, and hence Ĥ ′ cannot have two edge-disjoint
r–v∗ paths.
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In what follows, we show that Ĥ ′ does not have two edge-disjoint r–w paths for
any w ∈ (U− \ ∂−M) \ W . Fix w ∈ (U− \ ∂−M) \ W . Then, by the induction
hypothesis and Menger’s theorem [18], there exists an edge ew ∈ Ê such that w is not
reachable from r in Ĥ−ew. One can choose such an edge so that ew ∈ Ê\E = M∪Er
as follows.

Claim 6.5. Choose an edge ew ∈ Ê so that the set Yw of vertices that are not
reachable from r in Ĥ − ew contains w and is maximal. Then, ew 6∈ E.

Proof. By the definition, only ew enters Yw in Ĥ. Suppose to the contrary that
ew = uv ∈ E for some u ∈ U+ \ Y +

w and v ∈ Y −w . Since M is a perfect matching
in H, there exists an edge e′ = v′u ∈ M as well as uv′ ∈ M for some v′ ∈ U−.
If v′ 6= v, then v′ ∈ U− \ Y −w . Since only e′ enters u ∈ U+ in Ĥ, we can expand
Yw to Yw ∪ {u} by rechoosing ew as e′, which contradicts the maximality of Yw.
Otherwise, ew = uv ∈ M . Since only e′ = ēw enters u ∈ U+ in Ĥ, every r–u path
in Ĥ must intersect v, and hence any r–v path Q in Ĥ cannot traverse ew. Such
a path Q exists (since every vertex is reachable from r in Ĥ by the definition of an
augmented auxiliary graph) and enters Yw through an edge different from ew in Ĥ, a
contradiction.

If P is disjoint from Yw, then w ∈ Yw is not reachable from r also in Ĥ ′− ew, and
hence Ĥ ′ cannot have two edge-disjoint r–w paths. Otherwise, P enters Yw through
the edge ew ∈M ∪Er and leaves Yw at most once through an edge e. Then, ew is no
longer in Ĥ ′, and Yw has at most one new entering edge ē. This also concludes that
Ĥ ′ cannot have two edge-disjoint r–w paths.

Eligibility of output. We here show that the output of Procedure EPM(H) is
indeed an eligible perfect matching. Suppose that EPM(H) returns a perfect matching
M ⊆ E in H, and let Ĥ = (Û , Ê) be the augmented auxiliary graph Ĥ(M) when
EPM(H) halts, where Û = U ∪ {r} and Ê = E ∪M ∪ Er. Then, by Lemma 6.2 and
Menger’s theorem [18], for any w ∈ U− \∂−M , there exists an edge ew ∈ Ê such that
w is not reachable from r in Ĥ − ew. Choose such an edge ew as in Claim 6.5, i.e., so
that the set Yw of vertices that are not reachable from r in Ĥ − ew is maximal. We
then see the following property.

Claim 6.6. For any exposed vertices w1, w2 ∈ U− \ ∂−M , either Yw1
= Yw2

or
Yw1 ∩ Yw2 = ∅.

Proof. Let w1, w2 ∈ U− \ ∂−M be distinct vertices, and suppose to the contrary
that Yw1

6= Yw2
and Yw1

∩ Yw2
6= ∅. We then have ew1

6= ew2
. If Yw1

( Yw2
or

Yw2 ( Yw1 , then we can expand the included one to the including one by rechoosing
ew1 or ew2 as the other one, respectively, which contradicts the maximality of Yw1

and Yw2
. Thus, Yw1

\ Yw2
6= ∅ 6= Yw2

\ Yw1
.

Suppose that no edge enters Yw1
∩ Yw2

6= ∅ in Ĥ. Then, Ĥ[Yw1
∩ Yw2

] has some
source component of Ĥ[U ] = H(M), which contradicts that Er contains an edge from
r 6∈ Yw1 ∩ Yw2 to each source component of H(M).

Thus, Ĥ has an edge e entering Yw1 ∩ Yw2 , which must be ew1 or ew2 . If e enters
Yw1
∪Yw2

, then ew1
= e = ew2

, a contradiction. Otherwise, assume that e = ew1
leaves

Yw2 \ Yw1 without loss of generality. In this case, since r
Ĥ−→ w2 ∈ Yw1 ∪ Yw2 , the

other edge ew2 must enter Yw1 ∪Yw2 . This implies Yw2 ⊇ Yw1 ∪Yw2 , which contradicts
Yw1
\ Yw2

6= ∅.
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Fig. 5. The subpartition of U induced by Yw (w ∈ U− \ ∂−M).

By Claim 6.6, {Yw | w ∈ U− \ ∂−M } is a subpartition of U (see Figure 5). Let
Y :=

⋃
w∈U−\∂−M Yw, and define X− := Y− ∪ Z− as follows:

Y− := {Y −w | w ∈ U− \ ∂−M },

Z− := {Z− | H(M)[Z] is a source component of H(M) and Z ∩ Y = ∅ },

where recall that X+ := X ∩ U+ and X− := X ∩ U− for X ⊆ U . This X− is indeed
a subpartition of V −, and we prove τH(X−) = |U−| − |U+|+ s(H(M)).

By the definition (1), we see τH(X−) = τH(Y−) + τH(Z−). We first calculate
τH(Y−) by evaluating |Y −w | − |ΓH(Y −w )|+ 1 for each exposed vertex w ∈ U− \ ∂−M .
Fix w ∈ U− \ ∂−M , and let T−w := Yw ∩ (U− \ ∂−M). Then, by Claim 6.6, we have
Yw′ = Yw for every w′ ∈ T−w , and {T−w | w ∈ U− \ ∂−M } is a partition of U− \ ∂−M .
By Claim 6.5, we consider the following two cases separately: when ew ∈ Er and
when ew ∈M .

Claim 6.7. If ew ∈ Er, then |Y −w | − |ΓH(Y −w )|+ 1 = |T−w |+ 1.

Proof. In this case, no edge enters Yw in H(M). Hence, each strongly connected
component of H(M)[Yw] is also one of H(M). Since each sink component of H(M)
is a single vertex in U− \ ∂−M (Observation 2.3) and any other strongly connected
component of H(M) is balanced, we see |Y −w | = |Y +

w | + |T−w |. Since only the edge
ew ∈ Er enters Yw in Ĥ and every vertex in Yw is reachable in Ĥ − ew to some vertex
in T−w ⊆ Y −w , we see ΓH(Y −w ) = Y +

w , and hence |Y −w | − |ΓH(Y −w )|+ 1 = |T−w |+ 1.

Claim 6.8. If ew ∈M , then |Y −w | − |ΓH(Y −w )|+ 1 = |T−w |.
Proof. In this case, ew = vu ∈M for some v ∈ U− \ Y −w and u ∈ Y +

w . Since only
the edge ew enters Yw in Ĥ and M is a perfect matching in H, any u′ ∈ Y +

w \{u} ⊆ U+

is matched with some v′ ∈ Y −w \ T−w by M , and vice versa. Hence, |Y −w | = |Y +
w | − 1 +

|T−w |. We observe ΓH(Y −w ) = Y +
w in the same way as the previous proof, and hence

|Y −w | − |ΓH(Y −w )|+ 1 = |T−w |.
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Let α :=
∣∣{Yw | w ∈ U− \ ∂−M with ew ∈ Er }

∣∣. By Claims 6.7 and 6.8, we see

τH(Y−) =
∑

Y −w ∈Y−
|T−w |+ α = |U− \ ∂−M |+ α = |U−| − |U+|+ α.

Since the corresponding source component H(M)[Z] is balanced for each Z− ∈ Z−
(which is disjoint from Y ⊇ U− \ ∂−M), we see τH(Z−) = |Z−| (cf. section 2.3).
Hence, the next claim leads to α+ τH(Z−) = s(H(M)), which completes the proof.

Claim 6.9. α =
∣∣{Z | H(M)[Z] is a source component and Z ∩ Y 6= ∅ }

∣∣.
Proof. We show that for each w ∈ U− \ ∂−M , exactly one source component of

H(M) intersects Yw if ew ∈ Er, and so does no source component if ew ∈ M . Since
any strongly connected component of H(M)[Yw] is also one of H(M) when ew ∈ Er,
a unique source component intersecting Yw is included in H(M)[Yw], and hence this
is sufficient for the claim. Fix w ∈ U− \ ∂−M .

Suppose that ew = rv ∈ Er for some v ∈ S− ∩ Y −w . By the definition of S−, the
vertex v is in a source component of H(M). Suppose to the contrary that there exists
another source component of H(M) intersecting Yw. Then, such a source component
must be included in H(M)[Yw], and hence there exists another edge rv′ ∈ Er with
v′ ∈ Y −w . This contradicts that only ew enters Y −w in Ĥ.

Suppose that ew = vu ∈ M for some v ∈ U− \ Y −w and u ∈ Y +
w , and to the

contrary that there exists a source component H(M)[Z] of H(M) with Z ∩ Yw 6= ∅.
Then, by the definition of S−, there exists a vertex v′ ∈ S− ∩ Z with e′ = rv′ ∈ Er.
If v′ ∈ Yw, then e′ enters Yw in Ĥ, which contradicts that only ew 6= e′ enters Yw.
Otherwise, since H(M)[Z] is strongly connected, for any vertex z ∈ Z ∩Yw 6= ∅, there
exists a v′–z path in H(M)[Z]. Such a path must traverse ew = vu (since only ew
enters Yw), and hence {u, v} ⊆ Z. In this case, we can expand Yw to Yw ∪Z ) Yw by
rechoosing ew as e′, which contradicts the maximality of Yw.

6.3. Running time analysis. In this section, we see that Procedure EPM(H)
runs in O(nm) time, where n := |U−| and m := |E| (note that |U | = O(n) since
|U+| < |U−|). Since the isolated vertices in H can be ignored in the procedure (which
are added to W in Step 0 and just discarded in Step 2.1), we may assume n = O(m).

In Step 0, a perfect matching M ⊆ E in H can be found in O(nm) time even
by a näıve augmenting-path algorithm (in fact, before calling this procedure, one
has been obtained in the course of computing the DM-decomposition). In Step 1,
since the strongly connected components of the auxiliary graph H(M) are obtained
in linear time, an augmented auxiliary graph Ĥ(M) is constructed in O(m) time.
Since W is monotonically reduced in Step 2.1, the number of iterations of Step 2
is |W | = O(n). Step 2.2 can be done by performing the breadth first search twice
(i.e., by a näıve augmenting-path algorithm originated by Ford and Fulkerson [8]),
which requires O(m) time. The update of M and Ĥ along a path P in Step 2.3
takes O(n) time. Thus we conclude that the total computational time is bounded
by O(nm).

7. Applications. We show possible applications of Problem (DMI) in game the-
ory and in control theory (see [2] and [19, section 6.4], respectively, for the
details).

7.1. Bargaining in a two-sided market. Consider bargaining in a two-sided
market with the seller set S and the buyer set B in which the tradable pairs are
exogenously given as a bipartite graph G = (S,B;E), where each edge in E represents
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a tradable pair. Each seller has an indivisible good and each buyer has money. The
bargaining process is repeated as described in the next paragraph, and the utility
received from a successful trade is defined as follows: for a prescribed constant δ ∈
(0, 1), if the trade is done at price p at period t ∈ {0, 1, 2, . . . }, then the seller receives
δtp and the buyer does δt(1− p). Note that all the sellers share one utility function,
and so do all the buyers.

The bargaining process is as follows (see [2, section 2.2] for the precise formula-
tion). All the sellers and all the buyers alternately offer prices in [0, 1] for trade as the
proposers. Each agent in the other side accepts exactly one offered price or rejects all
of them as a responder, where the responders do not care with which specific proposer
they trade. For each price p accepted by some responder, we restrict ourselves to the
subgraph induced by the agents offering or accepting the price p, and trade is done
at price p according to a maximum matching in the subgraph. Note that there may
be several possible choices of maximum matchings. If there are multiple possibilities,
then one is chosen so that the set of matched agents is lexicographically minimum in
terms of the agent indices given in advance. Note also that we are not concerned with
which specific edges are used in the maximum matching, because the utility of each
agent depends only on the price p and the period t. Remove all the agents who have
traded from the graph, and repeat the above process for the remaining graph until it
has no edge.

A subgame perfect equilibrium in such a repeated game is, roughly speaking, a
strategy profile (i.e., in the above bargaining game, the offering prices and the re-
sponses to offered prices of all the agents at all the possible situations) in which
every agent has no incentive to change his or her action at any possible situation.
Corominas-Bosch [2] investigated the utility profile in each subgame perfect equi-
librium in the above game, which is denoted PEP (standing for a subgame perfect
equilibrium payoff). She captured a typical utility profile extending unique PEPs in
several small markets, called it the reference solution, and characterized when the
reference solution is indeed a PEP and moreover when it is a unique PEP.

Theorem 7.1 (Corominas-Bosch [2, Theorem 1]). Consider the above bargaining
game on a bipartite graph G = (S,B;E).

• When G is unbalanced, the reference solution is a PEP if and only if G is
DM-irreducible.

• When G is balanced, the reference solution is a PEP if and only if G is
perfectly matchable.

Theorem 7.2 (Corominas-Bosch [2, Proposition 6]). Consider the above bar-
gaining game on a bipartite graph G = (S,B;E), and suppose that the game starts
with the sellers’ proposals. Then, the restriction of any PEP to G0 is the reference
solution to G0, where G0 = (S0, B0;E0) denotes the DM-irreducible component of G
with |S0| > |B0|. In particular, if |S| > |B| and G is DM-irreducible, then there exists
a unique PEP, which is the reference solution.

Based on the above characterizations, for the unbalanced case, our result gives a
minimum number of additional tradable pairs to make such a bargaining game admit
a unique PEP, which is the reference solution. On the other hand, for the balanced
case, the uniqueness of a PEP is just guaranteed for the complete bipartite graphs
[2, Proposition 5]. She also gave an example enjoying multiple PEPs, in which the
bipartite graph is not DM-irreducible. What role the DM-decomposition of perfectly
matchable balanced bipartite graphs plays in such bargaining has been left as an
interesting question.



MAKING BIPARTITE GRAPHS DM-IRREDUCIBLE 587

7.2. Structural controllability of a linear system. Consider a linear time-
invariant system (K,A,B) in a descriptor form

Kẋ = Ax+Bu

with state variable x and input variable u. Under the genericity assumption that the
set of nonzero entries in K, A, and B are algebraically independent over Q, the system
(K,A,B) is said to be structurally controllable if the matrix pencil A− sK is regular
(i.e., det(A − sK) 6= 0 over the polynomial ring R[s], where s is an indeterminate)
and [A− zK | B] is of row-full rank for every z ∈ C.

For a matrix pencil D(s), let G(D(s)) denote the associated bipartite graph. The
both-side vertex sets are the row set and the column set of D(s), respectively, and
the edges correspond to the nonzero entries of D(s).

Theorem 7.3 (Murota [19, Corollary 6.4.8]). Let (K,A,B) be a linear time-
invariant system in a descriptor form with nonsingular K. Under the genericity
assumption, (K,A,B) is structurally controllable if and only if the following two con-
ditions hold:

• The bipartite graph G([A | B]) has a perfect matching.
• The bipartite graph G([A− sK | B]) is DM-irreducible.

This characterization enables us to check efficiently if a given linear system is
structurally controllable. If it turns out not to be, then a natural question is how to
modify the system to make it structurally controllable. If G([A | B]) admits a perfect
matching, our result provides an answer to this question by identifying the minimum
number of additional connections between the variables and the equations required
to make the entire system structurally controllable.

It would be more desirable if one can extend this approach to the case in which
G([A | B]) may not have a perfect matching. It is also interesting to deal with the
case of singular K. These problems are left for future investigation.

Appendix A. On reduction of unbalanced case to balanced case. Al-
though the unbalanced case is satisfactorily discussed via the reduction to matroid
intersection in section 4, we here provide an alternative discussion through the re-
duction to the balanced case shown in section 3.2: for an input unbalanced bipartite
graph G = (V +, V −;E) with |V +| < |V −|, we construct a balanced bipartite graph
G′ = (V + ∪ Z+, V −;E′) by adding a set Z+ of new vertices that are adjacent to all
the vertices in V −, i.e., E′ = E ∪ (Z+ × V −).

A.1. Alternative proof of the min-max duality theorem. In this section,
we derive the min-max duality theorem for the unbalanced case (Theorem 1.2) from
that for the balanced case (Theorem 1.1). First, we see the following weak duality as
a corollary of Lemma 5.2 (the weak duality in the balanced case) via the reduction.

Corollary A.1. Let G = (V +, V −;E) be a bipartite graph with |V +| < |V −|.
Then, for any edge set F ⊆ (V + × V −) \ E such that G + F is DM-irreducible and
any subpartition X+ of V +, we have |F | ≥ τG(X+).

We now start to prove Theorem 1.2. Let G = (V +, V −;E) be a bipartite graph
with |V +| < |V −|. By Corollary A.1, it suffices to construct a subpartition X+ of V +

with τG(X+) = opt(G). If |V −| = 1, then G itself is DM-irreducible, and X+ := ∅ is a
subpartition of V + with τG(X+) = 0 = opt(G). In what follows, we assume |V −| ≥ 2.

Let G′ = (V + ∪ Z+, V −;E′) be the balanced bipartite graph that is constructed
above. By Theorem 1.1, there exists a proper subpartition Y of V + ∪ Z+ or of V −
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such that τG′(Y) = opt(G′) = opt(G). Suppose that Y is a proper subpartition of
V + ∪ Z+. Since every vertex in Z+ is adjacent to all the vertices in V −, for each
X+ ⊆ V +∪Z+ with X+∩Z+ 6= ∅, we have |X+|−|ΓG′(X+)|+1 = |X+|−|V −|+1 ≤ 0.
By the maximality of τG′(Y), we may assume that Y contains no such X+, i.e., Y is
a subpartition of V +. We then obtain a desired subpartition X+ := Y of V + with
τG(X+) = τG′(Y) = opt(G).

Otherwise, Y is a nonempty proper subpartition of V −. Suppose that Y con-
tains two distinct elements X−, Y − ∈ Y. By the definition of E′, we have ∅ 6=
Z+ ⊆ ΓG′(X

−)∩ΓG′(Y
−), which implies |ΓG′(X− ∪ Y −)| = |ΓG′(X−)∪ΓG′(Y

−)| ≤
|ΓG′(X−)|+ |ΓG′(Y −)| − 1. Hence,(
|X−| − |ΓG′(X−)|+ 1

)
+
(
|Y −| − |ΓG′(Y −)|+ 1

)
≤ |X−∪Y −|−|ΓG′(X−∪Y −)|+1.

This enables us to replace X− and Y − with X− ∪ Y − without reducing the value
of τG′(Y). Thus, by the maximality of τG′(Y), we may assume Y = {Y −} for some
nonempty Y − ( V −. If ΓG′(Y

−) = V + ∪Z+, then τG′(Y) = |Y −| − |V + ∪Z+|+ 1 =
|Y −| − |V −|+ 1 ≤ 0, and hence X+ := ∅ is a desired subpartition of V +. Otherwise,
let X+ := V + \ ΓG(Y −) = (V + ∪Z+) \ ΓG′(Y

−) 6= ∅ and X+ := {X+}. We then see

τG(X+) = |X+| − |ΓG(X+)|+ 1

=
(
|V + ∪ Z+| − |ΓG′(Y −)|

)
− |ΓG′(X+)|+ 1

=
(
|V −| − |ΓG′(X+)|

)
− |ΓG′(Y −)|+ 1

≥ |Y −| − |ΓG′(Y −)|+ 1 = τG′(Y),

which concludes that X+ is a desired subpartition of V +.

A.2. Running time of Algorithm DMI. The reduction to the balanced case
increases the size of the input graph. In particular, G′ may have an essentially larger
number of edges than G, i.e., |E′| 6= O(m), where |V +| < |V −| = n and |E| = m.
While Algorithm DMI(G′) is just guaranteed to run in O(n|E′|) time in section 5.3,
it actually requires O(nm) time. The following observation is useful to the analysis.

Observation A.2. Let (V0;V1, V2, . . . , Vk;V∞) be the DM-decomposition of G′ and
M ′ ⊆ E′ a maximum matching in G′. Then the following conditions hold:

• M ′ consists of a maximum matching in G and a perfect matching in Z+×V −.
• Z+ is included in a single strongly connected component of G′(M ′) = G′+M ′,

which is a unique source component, and hence s(G′(M ′)) = 1.
• If V∞ 6= ∅, then Z+ ⊆ V +

∞ , and hence G′ − V∞ = G − V∞. In particular,
G′[V0] = G[V0].

By Observation A.2, a maximum matching M ′ ⊆ E in G′ consists of a maximum
matching in G and a perfect matching in G′[Z+∪V −]. Hence, we can find a maximum
matching in G′ in O(nm) time just by doing so in G and adding an arbitrary perfect
matching between the exposed vertices in G′[Z+ ∪ V −]. In addition, since Z+ is
included in a single strongly connected component of G′(M ′), we can regard Z+ as a
single vertex in computing the strongly connected component of G′(M ′). This makes
it possible to obtain the strongly connected components of G′(M ′) in O(n+m) time,
which concludes that Step 0 can be done in O(nm) time.

Since Step 4 is also done in O(n + m) time by the same argument, it suffices to
bound the running time of Step 2 by O(nm). If V∞ = ∅, then we do not reach Step
2. Otherwise, by Observation A.2, we see Z+ ⊆ V +

∞ and G′[V0] = G[V0]. Hence, one
can find an eligible perfect matching in G′[V0] in O(nm) time by Procedure EPM.
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In addition, since no edge enters V∞ in G′(M ′) by Observation 2.3, the strongly
connected component including Z+ is a unique source component also in G′(M ′)[V∞],
and hence s(G′(M ′)[V∞]) = 1. This condition does not depend on the choice of M ′,
which means that all the perfect matchings in G′[V∞] is eligible. Hence, we do not
need to use Procedure EPM for finding an eligible perfect matching in G′[V∞], which
concludes that Step 2 can be done in O(nm) time.

Appendix B. Finding an optimal subpartition. In our min-max duality
theorems (Theorems 1.1 and 1.2), we take the maximum of

τG(X ) =
∑
X∈X

(|X| − |ΓG(X)|+ 1)

over all (proper) subpartitions X of V + (and of V −). This situation is generalized as
follows. Given an intersecting supermodular function g : 2S → R with g(∅) = 0 over
some finite set S, find a (proper) subpartition X of S that maximizes

τg(X ) :=
∑
X∈X

g(X).

With the aid of efficient submodular function minimization algorithms, one can find
such a maximizer X in polynomial time as follows.

Let Q(g) be the associated polyhedron defined by

Q(g) = { z | z ∈ RS≥0, z(X) ≥ g(X) (∀X ⊆ S) },

where z(X) :=
∑
v∈X zv. Note that for any z ∈ Q(g) and any subpartition X of S,

we have z(S) ≥ τg(X ). Consider the following algorithm:
Step 0. Take an arbitrary vector z ∈ Q(g). Set U ← S and j ← 0.
Step 1. While z(U) > 0 do the following.

Step 1.1. Select an arbitrary element v ∈ U with zv > 0.
Step 1.2. Compute α := min{ z(X) − g(X) | v ∈ X ⊆ U }. If α < zv, then

j ← j + 1, let Xj be a unique maximal minimizer, zv ← zv − α, and
U ← U \Xj . Otherwise, z(v)← 0.

Let k be the value of j at the end of this algorithm. Then, X := {X1, X2, . . . , Xk}
is a subpartition of S. The vector z remains in Q(g) throughout the algorithm. At the
end of the algorithm, we have z(Xj) = g(Xj) for every j ∈ [k], and z(U) = 0. Thus
we obtain z(S) = τg(X ), which implies that X maximizes τg(X ) over all subpartitions
of S.

In order to find an optimal “proper” subpartition of S, one can use the above
algorithm to obtain an optimal subpartition of S \ {v} for each v ∈ S and take the
best among all the obtained subpartitions.
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