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INDEX REDUCTION VIA UNIMODULAR TRANSFORMATIONS∗

SATORU IWATA† AND MIZUYO TAKAMATSU‡

Abstract. This paper presents an algorithm for transforming a matrix pencil A(s) into another
matrix pencil U(s)A(s) with a unimodular matrix U(s) so that the resulting Kronecker index is at
most one. The algorithm is based on the framework of combinatorial relaxation, which combines
graph-algorithmic techniques and matrix computation. Our algorithm works for index reduction
of linear constant coefficient differential-algebraic equations, including those for which the existing
index reduction methods based on Pantelides’ algorithm or the signature method are known to fail.
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1. Introduction. A matrix pencil is a polynomial matrix in which the degree
of each entry is at most one. Each matrix pencil A(s) can be brought into its
Kronecker canonical form (KCF) by a strict equivalence transformation, i.e., a trans-
formation PA(s)Q with constant nonsingular matrices P and Q. Numerically stable
computation of KCF is a challenging problem, which has required enormous efforts
[2, 4, 5, 10, 26].

A matrix pencil A(s) is called regular if it is square and detA(s) is a nonvanishing
polynomial. The KCF of a regular matrix pencil is in a block-diagonal form that
consists of Nµ1

, . . . , Nµd
with Nµ = Iµ+sJµ and the residual square block Wµ0

+sIµ0
,

where Iµ is the µ×µ identity matrix, Jµ is a µ×µ matrix in which entries of the first
superdiagonal are 1 and all the remaining entries are zero, and Wµ is a µ×µ constant
matrix. A regular matrix pencil A(s) appears in linear constant coefficient differential-
algebraic equations (DAEs), and ν(A) := max1≤i≤d µi is related to numerical difficulty
for solving the corresponding DAE. The integer ν(A) is referred to as the index of
nilpotency [7] or the Kronecker index [13]. We use the latter name in this paper.

Let A(s) be an n× n regular matrix pencil. Previous work given in [8, 9, 17, 23]
aims at finding the Kronecker index ν(A) without obtaining the KCF. They utilize
the following characterization:

ν(A) = δn−1(A)− δn(A) + 1.(1.1)

Here, δk(A) denotes the maximum degree of minors of order k in A(s), i.e.,

δk(A) = max{deg detA(s)[I, J ] | |I| = |J | = k},(1.2)

where deg a(s) designates the degree of a polynomial a(s) and A(s)[I, J ] denotes the
submatrix with row set I and column set J .
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An easy way to estimate δk(A) is to make use of an upper bound δ̂k(A) obtained

by solving a matching problem in a bipartite graph. The value δ̂k(A) corresponds to
the maximum degree of a nonzero term in the determinant expansion and is equal to
δk(A) unless there is unlucky numerical cancellation. The previous work [8, 9, 17, 23]

presents algorithms to compute δk(A) by exploiting an upper bound δ̂k(A).
This paper focuses on the index reduction of a matrix pencil, while the above

previous work deals with the index computation. Our aim is to transform A(s) into
another matrix pencil with the Kronecker index at most one. More precisely, we
present an algorithm for finding a unimodular polynomial matrix U(s) such that
U(s)A(s) is a matrix pencil with ν(UA) ≤ 1.

Once the KCF of A(s) is obtained together with the transformation matrices,
it is straightforward to construct such a unimodular matrix U(s). Since numerical
difficulty is inherent in the computation of KCF, we aim at finding U(s) more directly
without relying on the KCF. Instead of computing the KCF, our algorithm makes
use of (1.1). It is known that the value of δn(A) is invariant under unimodular
equivalence transformations, which indicates δn(UA) = δn(A). On the other hand,
δn−1(UA) = δn−1(A) does not hold in general. In order to achieve ν(UA) ≤ 1,
U(s) needs to satisfy δn−1(UA) ≤ δn(UA) = δn(A). We find such U(s) efficiently

by exploiting δ̂n(A) and δ̂n−1(A), which are upper bounds on δn(A) and δn−1(A),
respectively.

Our motivation comes from the study of DAEs [1, 3, 7, 12, 22]. Consider a linear
constant coefficient DAE

F
dz(t)

dt
+Hz(t) = g(t)(1.3)

with an initial condition z(0) = z0, where F and H are constant matrices. By the
Laplace transformation, we obtain

A(s)z̃(s) = g̃(s) + Fz0(1.4)

with the matrix pencil A(s) = sF +H.
The numerical difficulty of the DAE (1.3) is measured by the Kronecker index

ν(A). A common approach for solving a high index DAE is to transform it into an
equivalent DAE with index at most one, which can be solved easily by numerical
methods including the backward differentiation formulas (BDF).

An equivalent DAE can be obtained by differentiating a certain equation and
adding it to another equation. Such operations correspond to equivalence row trans-
formations with unimodular polynomial matrix U(s). The Laplace transform of the
resulting DAE is in the form of

U(s)A(s)z̃(s) = U(s)(g̃(s) + Fz0).(1.5)

If U(s)A(s) is a matrix pencil with ν(UA) ≤ 1, we succeed in transforming (1.4) into
(1.5) with index at most one.

Example 1.1. Consider a linear constant coefficient DAE

−ż1 + ż2 + z3 = g1(t),(1.6)

z1 + ż3 = g2(t),(1.7)

z2 + ż3 = g3(t).(1.8)
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By the Laplace transformation, we obtain (1.4) with

A(s) =



−s s 1
1 0 s
0 1 s


 .

Since δ3(A) = deg detA(s) = 0 and δ2(A) = deg det ( s 1
0 s ) = 2, we have ν(A) = 3

by (1.1).
With a unimodular polynomial matrix U(s) defined by

U(s) =




1 s −s
−s −s2 + 1 s2

0 −1 1


 ,

the matrix pencil A(s) is transformed into U(s)A(s) =
(

0 0 1
1 0 0
−1 1 0

)
with ν(UA) ≤ 1.

The unimodular polynomial matrix U(s) corresponds to the following transformation
for the DAE (1.6)–(1.8):

(1.6) + (1.7)
′ − (1.8)

′

−(1.6)
′ − (1.7)

′′
+ (1.7) + (1.8)

′′

−(1.7) + (1.8)

z3 = g1(t) + g′2(t)− g′3(t),
z1 = −g′1(t)− g′′2 (t) + g2(t) + g′′3 (t),

−z1 + z2 = −g2(t) + g3(t).

The coefficient matrix pencil for the resulting DAE coincides with U(s)A(s).

The modeling and simulation software for dynamical systems, such as Dymola,
OpenModelica, and MapleSim, is equipped with the index reduction methods based
on Pantelides’ algorithm [20], the dummy derivative approach [14], or the signa-
ture method [21]. These algorithms adopt a structural approach, which extracts a
zero/nonzero pattern of coefficients in equations, ignoring the numerical values. Such
algorithms are efficient, because they exploit graph-algorithmic techniques. However,
the discard of numerical information can cause a failure even for linear constant co-
efficient DAEs. For nonlinear DAEs, Tan, Nedialkov, and Pryce [24] proposed two
symbolic-numeric conversion methods for fixing the signature method without prov-
ing its termination. We focus on index reduction of linear constant coefficient DAEs
and our algorithm is proved to work for any instances if the numerical computation
is carried out exactly.

The algorithms for computing δk(A) given in [8, 9, 17, 23] are based on the frame-
work of “combinatorial relaxation,” which combines graph-algorithmic techniques
and matrix computation. The combinatorial relaxation approach was invented by
Murota [16] for computing the Newton diagram of Puiseux-series solutions to deter-
minantal equations and then applied to the computation of the degree of determinants
of polynomial matrices [18]. In combinatorial relaxation algorithms for computing

δk(A), we find an upper bound δ̂k(A) of δk(A) by solving a matching problem and

check if δ̂k(A) = δk(A) by constant matrix computation. If δ̂k(A) 6= δk(A), then

we modify A(s) to improve δ̂k(A) without changing δk(A). After a finite number of

iterations, the algorithms terminate with δ̂k(A) = δk(A). They mainly rely on fast
combinatorial algorithms and perform numerical computation only when necessary.

Our index reduction algorithm, which consists of two phases, inherits the idea of
combinatorial relaxation. In the first phase, we transform A(s) into another matrix
pencil Ã(s) such that an estimate of ν(Ã) is at most one. In the second phase, we
determine if the estimate is correct. If not, we further transform Ã(s) into another
matrix pencil Â(s) with ν(Â) ≤ 1. In both phases, we exploit a feasible dual solution
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of the matching problem, which was also used by Pryce [21] in the interpretation of
Pantelides’ algorithm [20]. Moreover, we exploit the tight coefficient matrix in the
second phase. The tight coefficient matrix has been commonly used in combinatorial
relaxation algorithms. It is called the system Jacobian matrix [21] in the context of
DAEs. We remark that the second phase is similar to the linear combination method
given by Tan, Nedialkov, and Pryce [24]. By combining the two phases, our algorithm
succeeds in obtaining the DAE with index at most one.

The rest of this paper is organized as follows. In section 2, we explain the bipartite
matching problems associated with matrix pencils. We present an index reduction
algorithm in section 3. Section 4 gives numerical examples, and section 5 concludes
this paper.

2. Matrix pencils and matching problems.

2.1. Preliminaries. For a polynomial a(s), we denote the degree of a(s) by
deg a, where deg 0 = −∞ by convention. A polynomial matrix A(s) = (aij(s)) with
deg aij ≤ 1 for all (i, j) is called a matrix pencil . A matrix pencil A(s) is said to be
regular if A(s) is square and detA(s) is a nonvanishing polynomial.

Let us denote by block-diag(D1, . . . , Db) the block-diagonal matrix pencil with
diagonal blocks D1, . . . , Db. A regular matrix pencil is known to be strictly equivalent
to a block-diagonal form, the KCF [6, Chapter XII], in the form of block-diag(sIµ0 +
Wµ0 , Nµ1 , . . . , Nµd

), where Iµ is the µ × µ identity matrix, Wµ is a µ × µ constant
matrix, and Nµ is a µ× µ matrix pencil defined by

Nµ =




1 s 0 · · · 0

0 1 s
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 s
0 · · · · · · 0 1



.

Remember that for a regular matrix pencil A(s), the Kronecker index ν(A) is
defined to be the maximum size of Nµ blocks in the KCF of A(s), i.e., max1≤i≤d µi.
It is known [19, Theorem 5.1.8] that ν(A) is expressed by (1.1).

A polynomial matrix is called unimodular if it is square and its determinant is a
nonvanishing constant. This implies that a square polynomial matrix is unimodular
if and only if its inverse is a polynomial matrix.

2.2. Combinatorial estimate of δn(A). Let A(s) = (Aij(s)) be an n × n
regular matrix pencil with row set R and column set C. We construct a bipartite
graph G(A) = (R,C;E(A)) that has the vertex bipartition (R,C) corresponding to
the row set R and the column set C of A(s). The edge set E(A) is defined by
E(A) = {(i, j) | i ∈ R, j ∈ C,Aij(s) 6= 0}. The weight σij of an edge (i, j) is given
by σij = degAij(s). We remark that σij is equal to the (i, j) entry of the signature
matrix in the signature method [21]. Since A(s) is a matrix pencil, σij is 0 or 1 for
each (i, j) ∈ E(A). A subset M of E(A) is called a matching if every pair of edges in
M is disjoint. A matching M is called a perfect matching if M covers all the vertices.

Consider the following maximum-weight perfect matching problem P(A):

Maximize
∑

(i,j)∈M

σij

subject to M is a perfect matching.
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Since A(s) is regular, G(A) has a perfect matching. Let δ̂n(A) denote the maximum

weight of a perfect matching in G(A). Then δ̂n(A) is an upper bound on δn(A), i.e.,

δn(A) ≤ δ̂n(A).(2.1)

From various possible formulations of the dual problem of P(A), we choose the
following problem D(A):

Minimize ∆n(p, q) :=
∑

i∈R
pi −

∑

j∈C
qj(2.2)

subject to pi − qj ≥ σij ((i, j) ∈ E(A)),(2.3)

pi ∈ Z (i ∈ R),(2.4)

qj ∈ Z (j ∈ C).(2.5)

Our index reduction algorithm updates a matrix pencil A(s) and a feasible solution
(p, q) of D(A), which is not necessarily optimal. Let (p, q) be a feasible solution of
D(A). The weak duality for the maximum-weight perfect matching problem says

δ̂n(A) =
∑

(i,j)∈M

σij ≤
∑

(i,j)∈M

(pi − qj) =
∑

i∈R
pi −

∑

j∈C
qj = ∆n(p, q),(2.6)

where M denotes a maximum-weight perfect matching. The inequality is due to (2.3).
It follows from (2.1) and (2.6) that

δn(A) ≤ δ̂n(A) ≤ ∆n(p, q).(2.7)

Thus, we can make use of ∆n(p, q) as a combinatorial estimate of δn(A).
In order to bound the time complexity of our algorithm, we need an optimal

solution of D(A) for the initial matrix pencil A(s) satisfying

min
i∈R

pi ≥ 0, min
j∈C

qj = 0, max
j∈C

qj ≤ n.(2.8)

We explain a way to obtain such an optimal solution (p, q). It should be noted that
construction of (p, q) described below is performed only once at the beginning of the
algorithm.

Let M be a maximum-weight perfect matching in G(A) = (R,C;E(A)). Consider
an auxiliary directed graph ǦM = (V̌ , Ě) with V̌ = R ∪ C ∪ {w} and

Ě = M ∪ Ē ∪ {(w, j) | j ∈ R},

where w is a new vertex and Ē = {(i, j) | (j, i) ∈ E(A)}. We define the arc length
γ : Ě → Z by

γ(i, j) =





σij ((i, j) ∈M),

−σji ((i, j) ∈ Ē),

0 (i = w, j ∈ R).

Example 2.1. Consider a 3× 3 matrix pencil

A(s) =




1 s s
0 s s
0 0 1



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Fig. 1. A matrix pencil A(s) and two copies of auxiliary directed graphs ǦM = (V̌ , Ě). In
the middle graph, heavy lines show arcs in M . In the right graph, heavy, solid, and dotted lines
represent arcs of weight 1, 0, −1, respectively.

withR = {1, 2, 3} and C = {1, 2, 3}. The bipartite graphG(A) has a maximum-weight
perfect matching M = {(1, 1), (2, 2), (3, 3)}. Figure 1 depicts A(s) and auxiliary
directed graphs ǦM = (V̌ , Ě).

Let ρ(i, j) be the shortest path distance from i ∈ V̌ to j ∈ V̌ with respect to the
arc length γ in ǦM , which might be negative. We denote max`∈C ρ(w, `) by ρmax.

Lemma 2.2. The pair (p, q) given by

pi = −ρ(w, i) + ρmax (i ∈ R),(2.9)

qj = −ρ(w, j) + ρmax (j ∈ C)(2.10)

is an optimal solution of D(A) satisfying (2.8).

Proof. By the definition of (p, q), (2.4) and (2.5) clearly hold. For (i, j) ∈ E(A),
we have (j, i) ∈ Ē in ǦM and it holds that

ρ(w, i) ≤ ρ(w, j) + γ(j, i) = ρ(w, j)− σij ,(2.11)

because the shortest path from w to i is shorter than or equal to a path through j.
It follows from (2.9)–(2.11) that

pi − qj = −ρ(w, i) + ρ(w, j) ≥ σij ((i, j) ∈ E(A)).(2.12)

Thus (2.3) holds. This implies that (p, q) is a feasible solution of D(A).
For (i, j) ∈M , we have

ρ(w, j) ≤ ρ(w, i) + γ(i, j) = ρ(w, i) + σij ,

because the shortest path from w to j is shorter than or equal to a path through i.
Thus, (2.11) holds with equality, which implies that

pi − qj = −ρ(w, i) + ρ(w, j) = σij ((i, j) ∈M).(2.13)

It follows from (2.9), (2.10), and (2.13) that

∑

i∈R
pi −

∑

j∈C
qj = −

∑

i∈R
ρ(w, i) +

∑

j∈C
ρ(w, j) =

∑

(i,j)∈M

(−ρ(w, i) + ρ(w, j)) =
∑

(i,j)∈M

σij ,
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where the second equality holds because M is a perfect matching. Hence (p, q) is
optimal to D(A).

Finally, we show that (p, q) satisfies (2.8). The second condition follows from the
definition of qj . Since G(A) has a perfect matching, each i ∈ R is adjacent to at least
one vertex j ∈ C. Hence we have pi ≥ qj + σij ≥ 0 by (2.12), qj ≥ 0, and σij ≥ 0.
This implies the first condition mini∈R pi ≥ 0.

We now show the last condition. Let Pij denote the shortest path from i ∈ V̌ to
j ∈ V̌ . Consider two paths Pwj and Pw`. For the last common vertex v in Pwj and
Pw`, it holds that ρ(w, `) − ρ(w, j) = ρ(v, `) − ρ(v, j). Note that ρ(v, `) is at most
the number of arcs in M on Pv`, whereas −ρ(v, j) is at most the number of arcs in Ē
on Pvj . The sum of these upper bounds is at most n, because Pvj and Pv` have no
common vertex except v. Thus we obtain qj ≤ n for every j ∈ C.

2.3. Combinatorial estimate of δn−1(A). Let (p, q) be a feasible solution of
D(A). We now introduce a combinatorial estimate of δn−1(A) with (p, q). Consider
the following matching problem:

Maximize
∑

(i,j)∈M

σij

subject to M is a matching,

|M | = n− 1.

The optimal value is denoted by δ̂n−1(A).
For a submatrix A(s)[I, J ] with |I| = |J | = n − 1, the defining expansion of the

determinant is given by

detA(s)[I, J ] =
∑

σ:I→J
sgnσ

∏

i∈I
Aiσ(i)(s),

where σ runs over all one-to-one correspondence from I to J and sgnσ = ±1 is the
sign of σ. Then we have

max
|I|=|J|=n−1

max
σ:I→J

deg
∏

i∈I
Aiσ(i)(s) = δ̂n−1(A),

because a nonzero term
∏
i∈I Aiσ(i)(s) corresponds to a matching M with |M | = n−1.

Combining this with (1.2), we obtain

δn−1(A) ≤ δ̂n−1(A),(2.14)

which says that δ̂n−1(A) is an upper bound on δn−1(A).
For a feasible solution (p, q) of D(A), we define ∆n−1(p, q) by

∆n−1(p, q) := ∆n(p, q)−min
i∈R

pi + max
j∈C

qj =
∑

i∈R
pi −min

i∈R
pi −

∑

j∈C
qj + max

j∈C
qj .

Lemma 2.3. For a feasible solution (p, q) of D(A), we have

δ̂n−1(A) ≤ ∆n−1(p, q).
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Proof. Let M be a maximum-weight matching of size n − 1 and ∂M denote the
set of vertices incident to M . Then we have

δ̂n−1(A) =
∑

(i,j)∈M

σij ≤
∑

(i,j)∈M

(pi − qj) =
∑

i∈R∩∂M

pi −
∑

j∈C∩∂M

qj

≤
∑

i∈R
pi −min

i∈R
pi −

∑

j∈C
qj + max

j∈C
qj = ∆n−1(p, q),

where the first inequality is due to (2.3) and the second inequality follows from |R ∩
∂M | = |C ∩ ∂M | = n− 1.

It follows from (2.14) and Lemma 2.3 that

δn−1(A) ≤ δ̂n−1(A) ≤ ∆n−1(p, q).(2.15)

Thus, we can adopt ∆n−1(p, q) as a combinatorial upper bound on δn−1(A).

Example 2.4. Consider A(s) given in Example 2.1 again. It holds that

δn−1(A) = deg detA(s)[{2, 3}, {2, 3}] = deg det

(
s s
0 1

)
= deg s = 1.

Since G(A) has a maximum-weight matching of size 2 in A(s)[{1, 2}, {2, 3}] = ( s ss s ),

we have δ̂n−1(A) = 2. By computing the shortest path distance from w to each vertex,
we obtain p = (1, 1, 0) and q = (1, 0, 0). Hence, it holds that

∆n−1(p, q) =
∑

i∈R
pi −min

i∈R
pi −

∑

j∈C
qj + max

j∈C
qj = 2− 0− 1 + 1 = 2.

Thus we obtain 1 = δn−1(A) ≤ δ̂n−1(A) ≤ ∆n−1(p, q) = 2.

3. Index reduction algorithm.

3.1. Outline of algorithm. Let A(s) be an n × n regular matrix pencil, and
let (p, q) be a feasible solution of D(A) satisfying (2.8). By (2.7) and (2.15), we have

δn(A) ≤ δ̂n(A) ≤ ∆n(p, q), δn−1(A) ≤ δ̂n−1(A) ≤ ∆n−1(p, q).(3.1)

Our aim is to find a unimodular matrix U(s) such that Ā(s) = U(s)A(s) is a matrix
pencil with index ν(Ā) ≤ 1. The following algorithm updates a matrix pencil A(s)
and a feasible solution (p, q). The upper bounds ∆n(p, q) and ∆n−1(p, q) are non-
increasing. The resulting matrix pencil Ā(s) and a feasible solution (p̄, q̄) of D(Ā)
satisfy

δn(Ā) = δ̂n(Ā) = ∆n(p̄, q̄), δn−1(Ā) = δ̂n−1(Ā) = ∆n−1(p̄, q̄),(3.2)

p̄i ∈ {0, 1} (i ∈ R), q̄j = 0 (j ∈ C).(3.3)

We now describe the outline of the index reduction algorithm. The algorithm
consists of two phases. We design the first phase with the aim of decreasing maxj∈C qj
until zero. This leads to the condition (3.3), as shown in Lemma 3.3.
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We adopt

ν̂(p, q) := ∆n−1(p, q)−∆n(p, q) + 1

as an estimate of ν(A) = δn−1(A)− δn(A) + 1. Then ν̂(p, q) ≤ 1 holds at the end of
the first phase, which is shown in Corollary 3.4. It should be remarked that this does
not imply ν(A) ≤ 1, because ν̂(p, q) is not an upper bound on ν(A).

After the first phase, we have

∆n(p, q) =
∑

i∈R
pi, ∆n−1(p, q) =

∑

i∈R
pi −min

i∈R
pi

by the condition (3.3). Hence, it follows from (3.1) that

δn(A) ≤ ∆n(p, q) =
∑

i∈R
pi, δn−1(A) ≤ ∆n−1(p, q) =

∑

i∈R
pi −min

i∈R
pi.(3.4)

In the second phase, we decrease
∑
i∈R pi until (3.4) holds with equality. We make

use of the tight coefficient matrix to check if both δn(A) = ∆n(p, q) and δn−1(A) =
∆n−1(p, q) hold without computing δn(A) and δn−1(A) directly, as shown in
Lemma 3.5. If these equalities hold, we obtain

ν(A) = δn−1(A)− δn(A) + 1 = ∆n−1(p, q)−∆n(p, q) + 1 = ν̂(p, q) ≤ 1.

If not, we further update A(s) to another matrix pencil.
A formal description of the entire algorithm is as follows.

Outline of index reduction algorithm.
Step 1: Construct an optimal solution (p, q) of D(A) satisfying (2.8).
Step 2: If qj = 0 for every j ∈ C, then go to Step 4.

Step 3: Bring A(s) into another matrix pencil Ã(s) by a unimodular transformation
with the aid of the partition of R and C according to (p, q), and construct
a feasible solution (p̃, q̃) of D(Ã) from (p, q). Set A(s) ← Ã(s) and (p, q) ←
(p̃, q̃). Go back to Step 2.

Step 4: If both δn(A) = δ̂n(A) = ∆n(p, q) and δn−1(A) = δ̂n−1(A) = ∆n−1(p, q) hold,
then terminate.

Step 5: Bring A(s) into another matrix pencil Â(s) by a unimodular transformation
with the aid of the tight coefficient matrix, and construct a feasible solution
(p̂, q̂) of D(Â) from (p, q). Set A(s) ← Â(s) and (p, q) ← (p̂, q̂). Go back to
Step 4.

The first phase corresponds to Steps 1–3, while the second phase corresponds to
Steps 4–5. In Steps 1–3, we decrease p and q in order to construct a feasible solution
(p, q) satisfying (3.3), which implies ν̂(p, q) ≤ 1. Then we further decrease p to obtain
a feasible solution satisfying (3.2) in Steps 4–5. The details of Steps 3–5 are given in
sections 3.2–3.4, respectively.

3.2. Unimodular transformations in Step 3. We describe how to construct
(p̃, q̃) from a feasible solution (p, q) of D(A) satisfying (2.8) in Step 3. For each
nonnegative integer h, we define Rh = {i ∈ R | pi = h} and Ch = {j ∈ C | qj = h}.
Then A(s) is expressed as
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A(s) =




Cη Cη−1 Cη−2 · · · C1 C0

Rη ∗ ∗∗ ∗∗ · · · · · · ∗∗

Rη−1 O ∗ ∗∗ . . .
...

...
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . ∗∗

R1 O · · · · · · O ∗ ∗∗
R0 O · · · · · · O O ∗




for some η, where ∗ and ∗∗ denote a constant matrix and a matrix pencil, respectively.
Since A(s) is regular, the submatrix A(s)[R0, C0] is of full row-rank, and hence we
can express it as

(
∗ H0

)
with a nonsingular constant matrix H0.

Express the submatrix A(s)[R1 ∪R0, C0] as

( C0

R1 ∗∗ sF1 +H1

R0 ∗ H0

)

with constant matrices F1 and H1. By multiplying a unimodular matrix ( I −sF1H
−1
0

O I
)

from the left, we obtain

( C0

R1 sF2 +H2 H1

R0 ∗ H0

)

with constant matrices F2 and H2. Since A(s)[R0, C1] = O, this transformation does
not change A(s)[R1, C1].

Then consider the submatrix (sF2 +H2 H1), which can be transformed into
(
sF3 +H3 ∗∗ ∗
∗ ∗ ∗

)

by row transformations, where F3 and H3 are constant matrices with F3 being non-
singular, so that the lower part does not contain s.

As a result, we obtain another matrix pencil Ã(s) satisfying the following
conditions:

• It holds that

Ã(s)[R1 ∪R0, C1 ∪ C0] =



∗ sF3 +H3 ∗∗ ∗
∗ ∗ ∗ ∗
O ∗ ∗ H0


 ,(3.5)

where the first two row sets correspond to R1, the last row set corresponds
to R0, the first column set corresponds to C1, and the last three column sets
correspond to C0.

• The other entries coincide with the corresponding entries of A(s).
Let us denote the first row set of (3.5) by S. We construct (p̃, q̃) from (p, q) by

p̃i = pi − 1 (i ∈ R \ (R0 ∪ S)), p̃i = pi (i ∈ R0 ∪ S),

q̃j = qj − 1 (j ∈ C \ C0), q̃j = qj = 0 (j ∈ C0).

The following lemma ensures that (p̃, q̃) is a feasible solution of D(Ã).
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Lemma 3.1. Let (p, q) be a feasible solution of D(A) satisfying (2.8). Then (p̃, q̃)
is a feasible solution of D(Ã) satisfying (2.8).

Proof. By the construction rule of Ã(s), we have pi− qj ≥ σ̃ij . If p̃i− q̃j ≥ pi− qj
holds, then p̃i − q̃j ≥ pi − qj ≥ σ̃ij also holds.

Consider the case with p̃i − q̃j < pi − qj . This implies that i ∈ R \ (R0 ∪ S) and
j ∈ C0. Then we have p̃i − q̃j = pi − 1. If i /∈ R1 holds, it follows from pi ≥ 2 that
p̃i − q̃j = pi − 1 ≥ 1 ≥ σ̃ij . Next, suppose i ∈ R1 \ S. Then we have pi = 1 and

σ̃ij = 0 for (i, j) ∈ E(Ã) by (3.5). Hence p̃i − q̃j = pi − 1 = 0 ≥ σ̃ij holds. Moreover,
(p̃, q̃) satisfies (2.8) by the construction rule.

The following lemma shows that the values of the right-hand sides in (3.1) decrease
or remain the same when we update (p, q) to (p̃, q̃).

Lemma 3.2. Let (p, q) be a feasible solution of D(A) satisfying (2.8). The dual
solution (p̃, q̃) obtained by the above procedure satisfies

∆n(p, q) ≥ ∆n(p̃, q̃), ∆n−1(p, q) ≥ ∆n−1(p̃, q̃).

Proof. By the definition of p̃i and q̃j , we have
∑

i∈R
p̃i −

∑

j∈C
q̃j =

∑

i∈R
pi − |R \ (R0 ∪ S)| −

∑

j∈C
qj + |C \ C0|.

Since F3 and H0 in (3.5) are nonsingular, Ã(s)[R0 ∪ S,C0] is of full row-rank. Hence
we have |R0 ∪ S| ≤ |C0|, which implies that

|R \ (R0 ∪ S)| ≥ |C \ C0|.(3.6)

Thus the first inequality holds.
By the definition of p̃, the value of mini∈R p̃i is equal to mini∈R pi or mini∈R pi−1.

Since
∑
i∈R p̃i =

∑
i∈R pi − |R \ (R0 ∪ S)| holds, we have

∑

i∈R
p̃i −min

i∈R
p̃i ≤

∑

i∈R
p̃i −min

i∈R
pi + 1 =

∑

i∈R
pi −min

i∈R
pi − |R \ (R0 ∪ S)|+ 1.

Now C 6= C0 holds, because the condition in Step 2 is not fulfilled. Hence
∑

j∈C
q̃j −max

j∈C
q̃j =

∑

j∈C
qj −max

j∈C
qj − (|C \ C0| − 1)

follows. Thus we obtain

∆n−1(p̃, q̃) ≤
∑

i∈R
pi −min

i∈R
pi − |R \ (R0 ∪ S)| −

∑

j∈C
qj + max

j∈C
qj + |C \ C0|

≤
∑

i∈R
pi −min

i∈R
pi −

∑

j∈C
qj + max

j∈C
qj

= ∆n−1(p, q),

where the second inequality is due to (3.6).

By executing Steps 1–3, we obtain a matrix pencil A(s) and a feasible solution
(p, q) of D(A) satisfying (3.3) as follows.

Lemma 3.3. At the end of Phase 1, we obtain (p, q) such that pi ∈ {0, 1} for every
i ∈ R and qj = 0 for every j ∈ C. Moreover, the number of iterations in Phase 1 is
at most n.
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Proof. Step 2 ensures that qj = 0 for every j ∈ C. Since σij = 0 or 1, this implies
pi ∈ {0, 1} for each i ∈ R. At each iteration, maxj∈C qj decreases by one. Lemma 2.2
ensures that maxj∈C qj ≤ n holds for an initial solution (p, q), which indicates that
the number of iterations is at most n.

Lemma 3.3 leads to the following corollary.

Corollary 3.4. At the end of Phase 1, we have ν̂(p, q) ≤ 1.

Proof. By Lemma 3.3, pi ∈ {0, 1} holds for every i ∈ R and qj = 0 holds for every
j ∈ C. Let m denote the number of rows with pi = 1. Then we have

∆n(p, q) = m, ∆n−1(p, q) =

{
m (m < n),

m− 1 (m = n).
(3.7)

Hence it holds that

ν̂(p, q) = ∆n−1(p, q)−∆n(p, q) + 1 =

{
1 (m < n),

0 (m = n).

3.3. Test for tightness in Step 4. In this section, we present how to check if
both δn(A) = δ̂n(A) = ∆n(p, q) and δn−1(A) = δ̂n−1(A) = ∆n−1(p, q) hold in Step 4.

Suppose that we have a feasible solution (p, q) of D(A) such that pi ∈ {0, 1} for
every i ∈ R and qj = 0 for every j ∈ C. The tight coefficient matrix of A(s) is

defined to be the constant matrix A# = (A#
ij) with A#

ij being the coefficient of spi−qj

in Aij(s). The following lemma enables us to check δn(A) = δ̂n(A) = ∆n(p, q) and

δn−1(A) = δ̂n−1(A) = ∆n−1(p, q) efficiently.

Lemma 3.5. The tight coefficient matrix A# is nonsingular if and only if both
δn(A) = δ̂n(A) = ∆n(p, q) and δn−1(A) = δ̂n−1(A) = ∆n−1(p, q) hold.

Proof. Note that detA(s) = s∆n(p,q){detA# + o(1)} holds, where o(1) denotes
an expression consisting of negative powers of s. Therefore, if δn(A) = ∆n(p, q), then
A# must be nonsingular. Conversely, if A# is nonsingular, then δn(A) = ∆n(p, q),

which together with (3.1) implies δn(A) = δ̂n(A) = ∆n(p, q). The nonsingularity
of A# further implies that there exists a nonsingular submatrix A#[I, J ] such that
|I| = |J | = n−1 and I ⊇ R∗, where R∗ = {i ∈ R | pi > min

`∈R
p`}. Since detA(s)[I, J ] =

s∆n−1(p,q){detA#[I, J ] + o(1)}, we have δn−1(A) ≥ ∆n−1(p, q), which together with

(3.1) implies δn−1(A) = δ̂n−1(A) = ∆n−1(p, q).

By Lemma 3.5, we can perform Step 4 by checking the nonsingularity of A#. In
numerical computation, floating-point operations induce round-off errors, which make
it nontrivial to check the nonsingularity. A common approach to obviate this difficulty
is to use the singular value decomposition [27]. In fact, the MATLAB function called
rank returns the number of singular values that are larger than a tolerance.

3.4. Unimodular transformations in Step 5. Let A(s) be a matrix pencil in
Step 5. The algorithm has detected that the condition in Step 4 is not fulfilled, i.e.,
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the tight coefficient matrix A# is singular. Hence there exists a nonzero row vector
u = (ui | i ∈ R) such that

uA# = 0.

By executing the Gaussian elimination on A# with column transformations, we can
find u such that suppu := {i ∈ R | ui 6= 0} is minimal with respect to set inclusion.

By the definition of A#, we have A#[R0, C] = A(s)[R0, C]. Since A(s) is regular,
A#[R0, C] is of full row-rank. This implies that there exists ` ∈ suppu with p` = 1.

We now define U by

Uik =





uk/u` (i = `),

1 (k = i 6= `),

0 (k 6= i 6= `).

We remark that the row set and the column set of U correspond to R1 ∪ R0 and
U [R0, R1] = O. We denote by diag(s; p) the square diagonal matrix with each (i, i)
entry being spi . Then the polynomial matrix U(s) = diag(s; p) · U · diag(s;−p) is
unimodular.

Since A(s) can be expressed as

A(s) = diag(s; p) ·
(
A# +

1

s

(
A(0)[R1, C]

O

))
,

it holds that

U(s)A(s) = diag(s; p) · U ·
(
A# +

1

s

(∗
O

))
= diag(s; p) ·

(
UA# +

1

s

(∗ ∗
O ∗

)(∗
O

))

= diag(s; p) ·
(
UA# +

1

s

(∗
O

))
= diag(s; p) · UA# +

(∗
O

)
,

where ∗ denotes a constant matrix. Hence U(s)A(s) remains to be a matrix pencil.
Since the `th row vector of UA# is zero, U(s)A(s) does not contain s in the `th row.
Hence we can decrease p` = 1 by one. By setting

Â(s) := U(s)A(s), p̂i :=

{
0 (i = `),

pi (i 6= `),
q̂ := q,

we obtain another matrix pencil Â(s) and feasible solution (p̂, q̂).

Lemma 3.6. The number of iterations in Phase 2 is at most n.

Proof. At each iteration, the number of rows with pi = 0 increases by one.

At the end of the index reduction algorithm, we obtain a matrix pencil with index
at most one.

Theorem 3.7. The algorithm finds in O(n4) time a unimodular matrix U(s) such
that the Kronecker index of Ā(s) = U(s)A(s) is at most one.

Proof. When the algorithm terminates, we obtain Ā(s) and an optimal solution
(p̄, q̄) of D(Ā) satisfying (3.2) and (3.3) by Lemmas 3.3 and 3.5. Let m denote the
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number of rows with pi = 1. Then we have (3.7) for (p̄, q̄). Hence the Kronecker index
ν(Ā) is given by

ν(Ā) = δn−1(Ā)− δn(Ā) + 1 = ∆n−1(p̄, q̄)−∆n(p̄, q̄) + 1 =

{
1 (m < n),

0 (m = n).

Thus the index of Ā(s) is at most one.
In Step 1, we solve a maximum-weighted perfect matching problem. This can

be performed in O(n3) time by the Hungarian method [11, 15, 25]. Steps 3 and 5
require the Gaussian elimination, which costs O(n3) time at each iteration. Since the
number of iterations of Steps 3 and 5 is O(n) by Lemmas 3.3 and 3.6, the total time
complexity is O(n4).

4. Examples. We give three examples below.

Example 4.1. The following is a famous example for which Pantelides’ algorithm
does not work:

z1 − ż1 + 2z2 + 3z3 = 0,

z1 + z2 + z3 + 1 = 0,

2z1 + z2 + z3 = 0.

The corresponding matrix pencil A(s) is expressed as

A(s) =



−s+ 1 2 3

1 1 1
2 1 1


 .

By δ2(A) = 1 and δ3(A) = 0, we have ν(A) = 2. However, when we apply Pan-
telides’ algorithm [20] to A(s), the algorithm terminates without detecting equations
to be differentiated. Pantelides’ algorithm is adopted in the MATLAB function called
reduceDAEIndex. In fact, this function does not work for the above DAE.

Let us apply our algorithm to A(s). In Step 1, we find an optimal solution
p =

(
1 1 1

)
and q =

(
0 1 1

)
of D(A). In Step 3, we obtain another solution

p =
(
1 0 0

)
and q =

(
0 0 0

)
without changing A(s). Then we go to Step 4 by

q = 0. The tight coefficient matrix A# =
(−1 0 0

1 1 1
2 1 1

)
is singular. In Step 5, we have

u =
(
1 −1 1

)
and U(s) =

(
1 −s s
0 1 0
0 0 1

)
. The matrix pencil A(s) is transformed into

Ā(s) = U(s)A(s) =
(

1 2 3
1 1 1
2 1 1

)
with p =

(
0 0 0

)
and q =

(
0 0 0

)
. Then we obtain

ν(Ā) = 1.

Example 4.2. Next, consider another matrix pencil

A(s) =




0 1 s 0
0 0 1 s
1 1 0 1
1 1 1 s


 .

It follows from δ3(A) = 2 and δ4(A) = 0 that ν(A) = 3. We apply the algorithm
described in section 3 to A(s).

In Step 1, we find an optimal solution p =
(
1 1 1 1

)
and q =

(
1 1 0 0

)

of D(A). Then we go to Step 3 by q 6= 0. In Step 3, we delete s in the last row
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by row transformations and obtain a feasible dual solution p′ =
(
1 1 0 0

)
and

q′ =
(
0 0 0 0

)
as follows:

A(s) =




C1 C0

R1

0 1 s 0
0 0 1 s
1 1 0 1
1 1 1 s


 −→ A′(s) = U◦(s)A(s) =




C0

R1
0 1 s 0
0 0 1 s

R0
1 1 0 1
1 1 0 0


,

where U◦(s) =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

)
. We return to Step 2 and then go to Step 4 by q′ = 0.

The tight coefficient matrix A# =

(
0 0 1 0
0 0 0 1
1 1 0 1
1 1 0 0

)
is singular in Step 4, and we have

u′ =
(
0 1 −1 1

)
and U ′(s) =

(
1 0 0 0
0 1 −s s
0 0 1 0
0 0 0 1

)
in Step 5. The matrix pencil A′(s) is

transformed into

A′′(s) = U ′(s)A′(s) =




C0

R1 0 1 s 0

R0

0 0 1 0
1 1 0 1
1 1 0 0




with p′′ =
(
1 0 0 0

)
and q′′ =

(
0 0 0 0

)
.

Returning to Step 4, the tight coefficient matrix A# =

(
0 0 1 0
0 0 1 0
1 1 0 1
1 1 0 0

)
is also singular.

In Step 5, we have u′′ =
(
1 −1 0 0

)
and U ′′(s) =

(
1 −s 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
. The matrix pencil

A′′(s) is transformed into

Ā(s) = U ′′(s)A′′(s) =




0 1 0 0
0 0 1 0
1 1 0 1
1 1 0 0




with p̄ =
(
0 0 0 0

)
and q̄ =

(
0 0 0 0

)
. Returning to Step 4, the tight coeffi-

cient matrix A# = Ā(s) is nonsingular and hence we terminate the algorithm.
As a result, we obtain a unimodular matrix U(s) and a matrix pencil Ā(s) with

ν(Ā) = 1 expressed as

U(s) = U ′′(s)U ′(s)U◦(s) =




1 s2 − s s2 −s2

0 −s+ 1 −s s
0 0 1 0
0 −1 0 1


 , Ā(s) =




0 1 0 0
0 0 1 0
1 1 0 1
1 1 0 0


 .

In Examples 4.1 and 4.2, we have obtained a constant matrix Ā(s), which means
that the corresponding DAEs are systems of algebraic equations. This is not always
the case. We show a simple example which leads to Ā(s) containing s.
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Example 4.3. Consider a matrix pencil

A(s) =




1 0 0
s 0 1
0 s s


 .

By δ2(A) = 2 and δ3(A) = 1, we have ν(A) = 2.
In Step 1, we find an optimal solution p =

(
0 1 2

)
and q =

(
0 1 1

)
of D(A).

Then we go to Step 3 by q 6= 0. In Step 3, we delete s in the second row by row
transformations and obtain a feasible dual solution p̄ =

(
0 0 1

)
and q̄ =

(
0 0 0

)

as follows:

A(s) =




1 0 0
s 0 1
0 s s


 −→ Ā(s) = U(s)A(s) =




1 0 0
0 0 1
0 s s


 ,

where U(s) =
(

1 0 0
−s 1 0
0 0 1

)
. We return to Step 2 and then go to Step 4 by q̄ = 0. Since

the tight coefficient matrix A# =
(

1 0 0
0 0 1
0 1 1

)
is nonsingular in Step 4, we terminate the

algorithm.

5. Conclusion. We have presented a new index reduction algorithm of matrix
pencils which makes use of unimodular transformations. The algorithm is based on the
framework of combinatorial relaxation, which combines graph-algorithmic techniques
and matrix computation. Our algorithm can be used as an index reduction method
for linear constant coefficient DAEs. It works correctly for any such DAEs including
those for which Pantelides’ algorithm or the signature method are known to fail. An
extension of our algorithm to index reduction of nonlinear DAEs is left for future
investigation.
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