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ON THE KRONECKER CANONICAL FORM OF SINGULAR MIXED
MATRIX PENCILS∗

SATORU IWATA† AND MIZUYO TAKAMATSU‡

Abstract. Consider a linear time-invariant dynamical system that can be described as F ẋ(t) =
Ax(t) + Bu(t), where A, B, and F are mixed matrices, i.e., matrices having two kinds of nonzero
coefficients: fixed constants that account for conservation laws and independent parameters that
represent physical characteristics. The controllable subspace of the system is closely related to the
Kronecker canonical form of the mixed matrix pencil

(
A− sF | B

)
. Under a physically meaningful

assumption justified by the dimensional analysis, we provide a combinatorial characterization of the
sums of the minimal row/column indices of the Kronecker canonical form of mixed matrix pencils.
The characterization leads to a matroid-theoretic algorithm for efficiently computing the dimension
of the controllable subspace for the system with nonsingular F .
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1. Introduction. A matrix pencil is a polynomial matrix in which the degree
of each entry is at most one. Each matrix pencil is known to be strictly equivalent to
its Kronecker canonical form. The Kronecker canonical form plays an important role
in various fields such as systems control [6, 38] and differential-algebraic equations
[2, 12, 20, 34]. Several algorithms are designed for numerically stable computation of
the Kronecker canonical form [1, 7, 8, 18, 40].

An alternative method for the Kronecker canonical form is based on the so-called
structural approach, which extracts a zero/nonzero pattern of each coefficient in the
matrix pencil, ignoring the numerical values. The structural approach enables us to
compute the Kronecker canonical form of regular matrix pencils efficiently by exploit-
ing graph-algorithmic techniques under the genericity assumption that all the nonzero
coefficients are independent parameters which do not cause any numerical cancella-
tion. A recent work [15] has extended the structural approach to deal with singular
matrix pencils.

The structural approach dates back to the 1970s. In 1974, Lin [21] introduced the
notion of structural controllability , which leads to the development of the structural
approach in control theory [11, 13, 24, 37]. The structural approach has also been
developed in theory of differential-algebraic equations [32, 33]. In the present day,
many modeling and simulation tools for dynamical systems including Dymola [39]
adopt algorithms based on the structural approach.

An advantage of the structural approach is that it is supported by efficient combi-
natorial algorithms that are free from errors in numerical computation. On the other
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hand, however, the genericity assumption is often invalid when we set up a faithful
model of a physical system. This is partly because structural equations such as the
conservation laws can be described with specific numbers. This natural observation
led Murota and Iri [29] to introduce the notion of a mixed matrix , which is a constant
matrix that consists of two kinds of numbers as follows.
Accurate Numbers (Fixed Constants) Numbers that account for conservation

laws are precise in values. These numbers should be treated numerically.
Inaccurate Numbers (Independent Parameters) Numbers that represent phys-

ical characteristics are not precise in values. These numbers should be treated
combinatorially as nonzero parameters without reference to their nominal val-
ues. Since each such nonzero entry often comes from a single physical device,
the parameters are assumed to be independent.

The polynomial matrix version of a mixed matrix is called a mixed polynomial matrix .
To be more specific, a mixed polynomial matrix is a polynomial matrix D(s) =
Q(s) +T (s) such that the nonzero entries in the coefficient matrices of Q(s) are fixed
constants and those of T (s) are independent parameters.

The concept of mixed polynomial matrices may be too broad as a mathematical
tool for describing dynamical systems in practice. Taking the consistency of physical
dimensions in structural equations into account, Murota [22] introduced a class of
mixed polynomial matrices that satisfy the following condition.
(DC) Every nonvanishing subdeterminant of Q(s) is a monomial in s.
This subclass of mixed polynomial matrices has played an important role in the
matroid-theoretic structural approach to dynamical systems [23, 24, 25, 26, 31].

The Kronecker canonical form consists of nilpotent blocks, rectangular blocks,
and the other square blocks. The size of each rectangular block is called the minimal
row/column indices. Under the genericity assumption, [15] provides a combinatorial
characterization of the sizes of the nilpotent blocks as well as the sums of the minimal
row/column indices. The results on the nilpotent blocks have been successfully ex-
tended to the framework of mixed matrix pencils, i.e., mixed polynomial matrices with
degree at most one, without imposing the assumption (DC) on dimensional consis-
tency [16]. In this paper, we extend the characterization on the sums of the minimal
row/column indices to the framework of mixed matrix pencils satisfying (DC).

The minimal row/column indices have been characterized in terms of the Wong
sequences by Berger and Trenn [3, 4]. Their method can also deal with mixed matrix
pencils of moderate size with the aid of symbolic computation. The computational
cost, however, can grow explosively when the size increases. In order to overcome this
drawback, we aim at developing a method that does not rely on symbolic computation.
In fact, our characterization leads to an efficient matroid-theoretic algorithm that
consists of graph manipulation and matrix computation over the accurate numbers.

In control theory, the minimal row/column indices are also referred to as the
left/right Kronecker indices [19, 41]. For a linear time-invariant dynamical system
ẋ(t) = Ax(t) + Bu(t), the minimal column indices of the matrix pencil D(s) =(
sI −A | B

)
provides the so-called controllability indices [14, 19, 35, 42, 43], and the

sum of the minimal column indices corresponds to the dimension of the controllable
subspace. The definition of the controllable subspace is generalized to a linear time-
invariant dynamical system in a descriptor form F ẋ(t) = Ax(t) + Bu(t). The study
of the augmented Wong sequences has been developed to characterize fundamental
subspaces including the controllable subspace [2].

For the cases when A, B, and F are mixed matrices, Murota [23] has pre-
sented a matroid-theoretic algorithm for testing the controllability of this system.
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This algorithm, however, does not provide the dimension of the controllable subspace.
Our characterization of the sum of the minimal column indices leads to an algorithm
for computing the dimension of the controllable subspace under the assumption that
F is nonsingular.

The descriptor form F ẋ(t) = Ax(t)+Bu(t) with nonsingular F is mathematically
equivalent to ẋ(t) = F−1Ax(t) +F−1Bu(t). We should remark, however, that F−1A
and F−1B are no longer mixed matrices, and hence we cannot apply our algorithm
to the latter formulation. This is the reason why we should deal with the descriptor
form directly rather than reducing it to the standard form.

In the derivation of our result, we have two difficulties to overcome. In mixed
matrix theory, a problem for a mixed matrix pencil is generally reduced to that for
a certain layered mixed matrix pencil , but this straightforward approach does not
work well for the minimal column indices as discussed in [16, section 8]. This is the
first difficulty, which is resolved by Theorem 4.3. The second one occurs in using
the combinatorial canonical form (CCF) decomposition [30]. When we transform
a mixed matrix pencil D(s) into the CCF, the resulting matrix is not necessarily a
matrix pencil. We resolve this problem by showing in section 6 that a part of the CCF,
called the horizontal tail , remains to be a matrix pencil and has the same minimal
column indices as D(s).

The rest of this paper is organized as follows. In section 2, we recapitulate the
Kronecker canonical form. Section 3 discusses which blocks are invariant under equiv-
alence transformations with unimodular matrices. Sections 4 is devoted to mixed
matrix pencils. After expounding the CCF in mixed matrix theory in section 5, we
give a combinatorial characterization of the sums of the minimal row/column indices
in section 6. Section 7 describes an application of our result to controllability analysis
of dynamical systems. Finally, section 8 concludes this paper.

2. The Kronecker canonical form of matrix pencils. In this section, we
discuss matrix pencils over an arbitrary field F. Let D(s) = sX + Y be an m × n
matrix pencil with row index set R and column index set C. We denote by D(s)[I, J ]
the submatrix of D(s) determined by I ⊆ R and J ⊆ C. A matrix pencil D(s) is said
to be regular if D(s) is square and detD(s) 6= 0 as a polynomial in s. It is strictly
regular if both X and Y are nonsingular. The rank of D(s) is the maximum size of its
submatrix that is a regular matrix pencil. A matrix pencil D̄(s) is said to be strictly
equivalent to D(s) if there exists a pair of nonsingular constant matrices U and V
such that D̄(s) = UD(s)V .

For µ ≥ 1 and ε ≥ 0, we consider µ× µ matrix pencils Kµ, Nµ and an ε× (ε+ 1)
matrix pencil Lε defined by

Kµ =



s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . s 1
0 · · · · · · 0 s


, Nµ =



1 s 0 · · · 0

0 1 s
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 s
0 · · · · · · 0 1


, Lε =


s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 s 1

 .

The transpose matrix of Lη is denoted by L>η . Let us denote by block-diag(D1, . . . , Dh)
the block-diagonal matrix with diagonal blocks D1, . . . , Dh. A matrix pencil over C is
known to be strictly equivalent to a block-diagonal form called the Kronecker canoni-
cal form [10, Chapter XII]. The corresponding statement applicable over an arbitrary
field F is given as follows.
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Theorem 2.1. A matrix pencil D(s) over a field F is strictly equivalent to a
block-diagonal form D̄(s) with

D̄(s) = block-diag(Hν ,Kρ1 , . . . ,Kρc , Nµ1 , . . . , Nµd
, Lε1 , . . . , Lεp , L

>
η1 , . . . , L

>
ηq ),

where c, d, p, q ≥ 0, ρ1 ≥ · · · ≥ ρc ≥ 1, µ1 ≥ · · · ≥ µd ≥ 1, ε1 ≥ · · · ≥ εp ≥ 0,
η1 ≥ · · · ≥ ηq ≥ 0, and Hν is a strictly regular matrix pencil of size ν. The numbers
ν, c, d, p, q, ρ1, . . . , ρc, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq are uniquely determined.

When F = C, the strictly regular part Hν can further be brought into sIν + Jν
with Jν being the Jordan normal form. The resulting block-diagonal form is often
called the Kronecker canonical form. In this paper, however, we use the same term
for a matrix pencil over an arbitrary field F to mean the above block-diagonal form
D̄(s). We remark that L0 represents a 0 × 1 block. Having such a diagonal block
corresponds to having a zero column. For example, block-diag(L1, L0) designates a
matrix

(
s 1 0

)
.

The matrices Nµ1
, . . . , Nµd

are called the nilpotent blocks, and µ1, . . . , µd are
called the indices of nilpotency. The numbers ε1, . . . , εp and η1, . . . , ηq are the min-
imal column indices and minimal row indices, respectively. We collectively call
(ν, ρ1, . . . , ρc, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq) the structural indices of D(s). For the
rank r of D(s), it holds that

(2.1) r = ν +

c∑
i=1

ρi +

d∑
i=1

µi +

p∑
i=1

εi +

q∑
i=1

ηi, p = n− r, q = m− r.

We denote the degree of a polynomial f(s) by deg f(s), where deg 0 = −∞ by
convention. A rational function f(s) = g(s)/h(s) with irreducible polynomials g(s)
and h(s) is called a Laurent polynomial if h(s) is monomial. The degree of f(s) is
defined by deg f(s) = deg g(s)−deg h(s). Note that −deg f(s) is equal to the relative
degree of f(s).

Let B(s) be a Laurent polynomial matrix with row index set R and column index
set C. For k = 1, . . . , rankB(s), we denote

δk(B(s)) = max{deg detB(s)[I, J ] | |I| = |J | = k, I ⊆ R, J ⊆ C},
ζk(B(s)) = min{ord detB(s)[I, J ] | |I| = |J | = k, I ⊆ R, J ⊆ C},

where ord denotes the minimum degree of a nonzero term in a Laurent polynomial.
We define δ0(B(s)) = 0 and ζ0(B(s)) = 0. By ζk(B(s)) = −δk(B(1/s)), we obtain

(2.2) δk(X + sY ) = k + δk

(
1

s
X + Y

)
= k − ζk(sX + Y ).

For the indices of nilpotency of the Kronecker canonical form, it is known that

(2.3) d = r −max
k≥0

δk(D(s)), µi = δr−i(D(s))− δr−i+1(D(s)) + 1

hold [28, Theorem 5.1.8]. Since ρi (i = 1, . . . , c) of D(s) = sX + Y coincides with
µ′i (i = 1, . . . , d′) of D′(s) = X + sY , it follows from (2.2) and (2.3) that

c = d′ = r −max
k≥0

δk(D′(s)) = r + min
k≥0

(ζk(D(s))− k),(2.4)

ρi = µ′i = δr−i(D
′(s))− δr−i+1(D′(s)) + 1 = ζr−i+1(D(s))− ζr−i(D(s)).(2.5)
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In addition, it is shown in [15] that the following equation holds:

(2.6) ν +

p∑
i=1

εi +

q∑
i=1

ηi = δr(D(s))− ζr(D(s)).

Let A(s) be an m×n polynomial matrix. The kth determinantal divisor dk(A(s))
is defined to be the greatest common divisor of all the subdeterminants of order k:

(2.7) dk(A(s)) = gcd{detA(s)[I, J ] | |I| = |J | = k} (k = 0, 1, . . . , rankA(s)),

where dk(A(s)) is chosen to be monic and d0(A(s)) = 1 by convention. The following
lemma characterizes the sum of the sizes of the Hν block and Kρi blocks.

Lemma 2.2. For a matrix pencil D(s) of rank r, we have ν +
∑c
i=1 ρi =

deg dr(D(s)).

Proof. Let D̄(s) be the Kronecker canonical form of D(s). We now have dν(Hν) =
detHν , dρ(Kρ) = sρ, dµ(Nµ) = 1, dε(Lε) = gcd{sε, sε−1, . . . , 1} = 1, and dη(L>η ) =

gcd{sη, sη−1, . . . , 1} = 1. Hence dr(D(s)) = dr(D̄(s)) = sρ1+···+ρc detHν holds. Since
Hν is strictly regular, this implies deg dr(D(s)) = ρ1 + · · ·+ ρc + ν.

For an m× n matrix pencil D(s) = sX + Y , we consider a (k+ 1)m× kn matrix

Ψk(D) =



X O · · · O

Y X
. . .

...

O Y
. . . O

...
. . .

. . . X
O · · · O Y


.

We denote the rank of Ψk(D) by ψk(D). The following equation shows a close rela-
tionship between ψk(D) and ε1, . . . , εp [15, Theorem 2.3]:

(2.8) ψk(D) = rk +

p∑
i=1

min{k, εi}.

We generalize the definition of Ψk(D) to that for a polynomial matrix as follows.

Let A(s) =
∑N
i=0 s

iAi be an m×n polynomial matrix such that the maximum degree
of entries is N . Given A(s) and an integer l, we define a (k + l)m× kn matrix

Ψl
k(A) =



C0 C1 · · · Ck−1

R0 A0 O · · · O

R1 A1 A0
. . .

...
...

... A1
. . . O

Rl Al
...

. . . A0

Rl+1 O Al
. . . A1

...
...

. . .
. . .

...
Rk+l−1 O · · · O Al


with row index set R̃ = R0 ∪ R1 ∪ · · · ∪ Rk+l−1 and column index set C̃ = C0 ∪ C1

∪ · · · ∪ Ck−1. We note that Ah = O for h > N . The matrix Ψ1
k(A) coincides with
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Ψk(A0 + sA1), and the ranks of Ψl
k(A) for l ≥ N attain the same value, which we

denote by ψk(A). The following lemma is a generalization of Corollary 2.4 in [15].

Lemma 2.3. If an m× n polynomial matrix A(s) is of full-column rank, we have
ψk(A) = kn for each k.

Proof. Let N denote the maximum degree of entries in A(s). We assume that
ψk(A) 6= kn, which implies that ΨN

k (A) is not of full-column rank. Let hlj denote the

lth column vector of ΨN
k (A)[R̃, Cj ]. Then we have

∑k−1
j=0

∑
l∈Cj

λljh
l
j = 0 for some λlj

such that scalars λlj are not all zero.

Let C denote the column index set of A(s). By the definition of ΨN
k (A), a part

of vector hlj indexed by Ri is equal to the lth vector of Ai−j , denoted by Ali−j , where
we set Ai−j = O if i− j < 0 or i− j > N . Hence it holds that

(2.9)

k−1∑
j=0

∑
l∈C

λljA
l
i−j = 0 (i = 0, 1, . . . , k +N − 1).

We denote the lth vector of A(s) by al(s). Consider a linear combination b(s) =∑
l∈C(

∑k−1
j=0 λ

l
js
j)al(s) of vectors in A(s), where each coefficient is a polynomial in s.

The coefficient of si in b(s) is expressed as
∑
l∈C

∑k−1
j=0 λ

l
jA

l
i−j , which is equal to 0

by (2.9). Hence b(s) = 0 holds. This implies A(s) is not of full-column rank.

3. Invariance under unimodular equivalence transformations. A polyno-
mial matrix is called unimodular if it is square and its determinant is a nonvanishing
constant. For a polynomial matrix A(s), dk(A(s)) is invariant under unimodular
equivalence transformations, that is, dk(A(s)) = dk(A′(s)) if A′(s) = U(s)A(s)V (s)
with unimodular matrices U(s) and V (s). The same applies to ζk(B(s)) for a Laurent
polynomial matrix B(s).

For a matrix pencil D(s), consider another matrix pencil D′(s) obtained by
D′(s) = U(s)D(s)V (s) with some unimodular matrices U(s) and V (s). The struc-
tural indices of D′(s) is denoted by (ν′, ρ′1, . . . , ρ

′
c′ , µ

′
1, . . . , µ

′
d′ , ε
′
1, . . . , ε

′
p′ , η

′
1, . . . , η

′
q′).

We have p = p′ and q = q′ by (2.1), c = c′ by (2.4), and ρi = ρ′i (i = 1, . . . , c) by
(2.5). Since dr(D(s)) = dr(D

′(s)) with r = rankD(s) = rankD′(s), ν = ν′ follows
from Lemma 2.2.

Table 1 shows whether the size of each block is invariant or not under the following
three kinds of transformations from D(s) into another matrix pencil D′(s):

(1) D′(s) = U(s)D(s)V (s), (2) D′(s) = UD(s)V (s), (3) D′(s) = U(s)D(s)V,

where U(s), V (s) are unimodular matrices and U, V are nonsingular constant matrices.
The results of (1) in Table 1 follow from the above discussion.

Table 1
The invariance of structural indices under equivalence transformations, where

√
represents

that the indices are invariant, and — represents that the indices can be different. Here, U(s), V (s)
are unimodular matrices and U, V are nonsingular constant matrices.

Hν Kρ Nµ Lε L>η
(1) D(s)→ U(s)D(s)V (s)

√ √
— — —

(2) D(s)→ UD(s)V (s)
√ √

— —
√

(3) D(s)→ U(s)D(s)V
√ √

—
√

—
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We now consider the Lε block in Table 1. Let A(s) =
∑N
i=0Ais

i be a polynomial
matrix, U(s) =

∑
i Uis

i be a unimodular matrix, and V be a nonsingular constant
matrix. We denote the maximum degree of entries in U(s)A(s)V by N ′(≥ N). Then
we have ΨN ′

k (U(s)A(s)V ) = Ũk+N ′−1ΨN ′

k (A(s))Ṽk, where Ũk+N ′−1 is a (k +N ′)m×
(k +N ′)m matrix and Ṽk is a kn× kn matrix defined by

Ũk+N ′−1 =


U0 O · · · O

U1 U0
. . .

...
...

. . .
. . . O

Uk+N ′−1 · · · U1 U0

 , Ṽk =


V O · · · O

O V
. . .

...
...

. . .
. . . O

O · · · O V

 .

We note that U(s)A(s)V does not have entries with degreeN ′+1, N ′+2, . . . , N ′+k−1,
because N ′ is the maximum degree of entries in U(s)A(s)V . Since U(s) is unimodular,
U0 is nonsingular, which implies that Ũk+N ′−1 is nonsingular. In addition, Ṽ is also
nonsingular by the nonsingularity of V . Hence we obtain

(3.1) ψk(U(s)A(s)V ) = ψk(A(s)).

Let D′(s) = U(s)D(s)V be a matrix pencil described in (3) in Table 1. By (3.1),
we have ψk(D′) = ψk(D). Thus, D(s) and D′(s) have the same minimal column
indices by (2.8). For (2) in Table 1, we can prove that D(s) and UD(s)V (s) have the
same minimal row indices in a similar way. Thus, we complete Table 1.

4. Mixed matrix pencils and LM-matrix pencils. Let K be a subfield of a
field F. A typical setting of (K,F) is that K and F are the fields of rational and real
numbers. A subset Y = {y1, . . . , yh} of F is said to be algebraically independent over K
if there exists no nontrivial polynomial p(X1, . . . , Xh) over K such that p(y1, . . . , yh) =
0, where p(X1, . . . , Xh) is called nontrivial if some of its coefficients are not zero.

A matrix A(s) is called a mixed polynomial matrix with respect to (K,F) if A(s)
is given by A(s) = Q(s) + T (s) with a pair of polynomial matrices Q(s) over K and
T (s) over F that satisfy the following two conditions.
(MP-Q) The coefficients of nonzero entries of Q(s) belong to K.
(MP-T) The coefficients of nonzero entries of T (s) belong to F, and the set of

nonzero coefficients of T (s) is algebraically independent over K.

If A(s) is expressed as
(
Q(s)
T (s)

)
, A(s) is called a layered mixed polynomial matrix (LM-

polynomial matrix).
In order to reflect the dimensional consistency in conservation laws of dynamical

systems, Murota [22] introduces the following condition on Q(s), which is a formal
version of (DC) in section 1.
(MP-DC) Every nonvanishing subdeterminant of Q(s) is a monomial in s over K.
Let diag[a1, a2, . . . , ah] denote a diagonal matrix having diagonal entries a1, a2, . . . , ah.
It is known [22, 24] that an m× n matrix Q(s) satisfies (MP-DC) if and only if

(4.1) Q(s) = diag[sp1 , sp2 , . . . , spm ] ·Q(1) · diag[s−q1 , s−q2 , . . . , s−qn ]

for some integers pi (i = 1, . . . ,m) and qj (j = 1, . . . , n).
We call a mixed polynomial matrix A(s) satisfying (MP-DC) a dimensionally

consistent mixed polynomial matrix (DCM-polynomial matrix). If A(s) is an LM-
polynomial matrix, we call it a dimensionally consistent LM-polynomial matrix
(DCLM-polynomial matrix).
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A mixed polynomial matrix and an LM-polynomial matrix are called a mixed
matrix pencil and an LM-matrix pencil if the degree of each entry is at most one.
If they satisfy (MP-DC), we call them a dimensionally consistent mixed matrix pen-
cil (DCM-matrix pencil) and a dimensionally consistent LM-matrix pencil (DCLM-
matrix pencil), respectively.

Several efficient algorithms have been developed [17, 27, 36] for computing δk(A(s))
of a mixed matrix pencil A(s). If A(s) is an m × n DCM-matrix pencil, the com-
putation of δk(A(s)) is reduced to a weighted matroid intersection problem [28, Re-
mark 6.2.10], which can be solved with O(m2nk) arithmetic operations over K. With
the aid of the fast matrix multiplication, one can improve this bound to O(mω−1nk),
where ω < 2.38.

Example 4.1. Let D(s) =
(
Q(s)
T (s)

)
be a DCLM-matrix pencil with respect to (Q,R)

defined by

(4.2)

(
Q(s)
T (s)

)
=


1 0 0 0 0
0 1 0 s 1
−t3 0 t1 0 0
0 −t4 0 0 t2s

 ,

where Y = {t1, t2, t3, t4} ⊆ R is algebraically independent over Q. We can see that
(MP-DC) is fulfilled as Q(s) = diag[1, s] ·Q(1) · diag[1, s−1, 1, 1, s−1].

Let DM(s) = s(XQ + XT ) + (YQ + YT ) be an m × n mixed matrix pencil with
Q(s) = sXQ + YQ and T (s) = sXT + YT . Consider an LM-matrix pencil

(4.3) D(s) =

(
I sXQ + YQ
−Z sXT + YT

)
,

where Z is a diagonal matrix with the (i, i) entry being a new parameter ti ∈ F. The
following corollary shows the relation between DM(s) and D(s).

Corollary 4.2. The minimal row indices ofDM(s) coincide with those of D(s).

Proof. Let Tij(s) denote the (i, j) entry of T (s) = sXT + YT . We define D̂(s) =(
I sXQ + YQ
−I sXT + YY

)
, which is obtained by dividing (m + i)th row of D(s) by ti and

redefining Tij(s)/ti to be Tij(s). Since the Kronecker canonical form is invariant

under this transformation, D̂(s) and D(s) have the same Kronecker canonical form.
Let us define a nonsingular constant matrix U and a unimodular matrix V (s) by

U =
( I O
I I

)
and V (s) =

( I −(sXQ + YQ)
O I

)
. Then we have UD̂(s)V (s) =(

I O
O DM(s)

)
. This transformation corresponds to (2) in Table 1. Hence, D(s) and

UD̂(s)V (s) have the same minimal row indices. The Kronecker canonical form of
UD̂(s)V (s) consists of m copies of N1 and the Kronecker canonical form of DM(s).
Therefore, D(s) and DM(s) have the same minimal row indices.

According to (2) in Table 1, Nµ and Lε blocks of DM(s) and D(s) can be different.
However, their sum has the following relation.

Theorem 4.3. Let us denote the structural indices of DM(s) and D(s) by
(ν′, ρ′1, . . . , ρ

′
c′ , µ

′
1, . . . , µ

′
d′ , ε
′
1, . . . , ε

′
p′ , η

′
1, . . . , η

′
q′) and (ν, ρ1, . . . , ρc, µ1, . . . , µd, ε1, . . . ,

εp, η1, . . . , ηq), respectively. Then we have
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m+

d′∑
i=1

µ′i +

p′∑
i=1

ε′i =

d∑
i=1

µi +

p∑
i=1

εi.

Proof. As shown in the proof of Corollary 4.2, the transformation from a mixed
matrix pencil into the associated LM-matrix pencil is regarded as the transformation
(2) in Table 1. Hence we have c′ = c, q′ = q, ν′ = ν, ρ′i = ρi (i = 1, . . . , c), and
η′i = ηi (i = 1, . . . , q). Let r′ and r denote the ranks of DM(s) and D(s), respectively.

Due to the proof of Corollary 4.2, r = rank D̂(s) = rank( I O
O DM(s) ) = m+ r′ holds. It

follows from (2.1) that
∑d
i=1 µi +

∑p
i=1 εi = m+

∑d′

i=1 µ
′
i +
∑p′

i=1 ε
′
i.

5. The combinatorial canonical form in mixed matrix theory. In this
section, we expound the CCF in mixed matrix theory [26, 30]. In particular, we focus

on a DCLM-polynomial matrix D(s) =
(
Q(s)
T (s)

)
.

An LM-admissible transformation is defined to be an equivalence transformation
in the form of

(5.1) Pr

(
W (s) O
O I

)(
Q(s)
T (s)

)
Pc,

where Pr and Pc are permutation matrices, and W (s) is a unimodular matrix. We
remark that the resulting matrix is an LM-polynomial matrix but is not necessarily
a matrix pencil even if D(s) =

(
Q(s)
T (s)

)
is an LM-matrix pencil.

We denote the row index set and the column index set of D(s) =
(
Q(s)
T (s)

)
by R and

C, and the row index sets of Q(s) and T (s) by RQ and RT . Consider a set function
σ : 2C → Z defined by

σ(J) = rankQ(s)[RQ, J ] +

∣∣∣∣∣∣
⋃
j∈J
{i ∈ RT | Tij(s) 6= 0}

∣∣∣∣∣∣− |J |,
where Tij(s) denotes the (i, j) entry of T (s). Then the set function σ is known to be
submodular, that is, σ(J1)+σ(J2) ≥ σ(J1∪J2)+σ(J1∩J2) holds for J1, J2 ⊆ C. The
family of minimizers Lmin(σ) = {J ⊆ C | σ(J) ≤ σ(J ′) ∀J ′ ⊆ C} forms a sublattice
of 2C , i.e., J1, J2 ∈ Lmin(σ) implies J1 ∪ J2, J1 ∩ J2 ∈ Lmin(σ).

Let C : J0 ( J1 ( · · · ( Jb be a maximal chain in Lmin(σ). Put C0 = J0, Ck =
Jk \Jk−1 for k = 1, . . . , b, and C∞ = C \Jb to obtain a partition (C0;C1, . . . , Cb;C∞)
of C. Based on this partition, D(s) can be brought into the CCF by an LM-admissible
transformation as follows.

Theorem 5.1 (see [26, Lemma 3.1]). Let D(s) =
(
Q(s)
T (s)

)
be a DCLM-polynomial

matrix. By an LM-admissible transformation, D(s) can be brought into another LM-

polynomial matrix D̃(s) =
(Q̃(s)

T̃ (s)

)
with the following properties.

(B1) D̃(s) is block-triangularized, i.e., D̃[Rk, Cl] = O if 0 ≤ l < k ≤ ∞ with respect to
partitions (R0;R1, . . . , Rb;R∞) and (C0;C1, . . . , Cb;C∞) of the row/column
index sets of D̃(s), where b ≥ 0, Rk 6= ∅, and Ck 6= ∅ for k = 1, . . . , b, and
R0, R∞, C0, and C∞ can be empty.

(B2) The sizes of the diagonal blocks satisfy (i) |R0| < |C0| or |R0| = |C0| = 0,
(ii) |Rk| = |Ck| > 0 for k = 1, . . . , b, (iii) |R∞| > |C∞| or |R∞| = |C∞| = 0.

(B3) The diagonal blocks satisfy (i) rank D̃[R0, C0] = |R0|, (ii) rank D̃[Rk, Ck] =
|Rk| = |Ck| for k = 1, . . . , b, (iii) rank D̃[R∞, C∞] = |C∞|.
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(B4) The diagonal blocks also satisfy (i) rank D̃[R0, C0 \ {j}] = |R0| (j ∈ C0),
(ii) rank D̃[Rk \ {i}, Ck \ {j}] = |Rk| − 1 = |Ck| − 1 (i ∈ Rk, j ∈ Ck) for
k = 1, . . . , b, (iii) rank D̃[R∞ \ {i}, C∞] = |C∞| (i ∈ R∞).

(B5) D̃(s) is the finest proper block-triangular matrix among LM-polynomial matrices
connected by an LM-admissible transformation.

We call D̃(s) in Theorem 5.1 the CCF of D(s), and D0(s) := D̃[R0, C0] the
horizontal tail .

Recall the definition of dk(A(s)) in (2.7). We now have the following lemma.

Lemma 5.2 (see [28, Theorem 6.3.4 and Remark 6.3.7]). Let D(s) =
(
Q(s)
T (s)

)
be a

DCLM-polynomial matrix of rank r. The rth monic determinantal divisor dr(D(s))

can be expressed by dr(D(s)) = αr · g(s) ·
∏b
l=1 det D̃(s)[Rl, Cl], where αr ∈ F is a

constant, g(s) is a monomial in s, and D̃(s)[Rl, Cl] (l = 1, . . . , b) are the square blocks
which appear in the CCF of D(s).

If D(s) is a DCLM-matrix pencil, we can construct a CCF such that the horizontal
tail D0(s) is also a DCLM-matrix pencil. In the expression (4.1) of Q(s), we can
assume p1 ≤ p2 ≤ · · · ≤ pm and q1 ≤ q2 ≤ · · · ≤ qn without loss of generality. We
now briefly describe the algorithm for computing D0(s), which is given in [26, §3.2].

Step 1. Determine the partition (C0;C1, . . . , Cb;C∞) of C with reference to the set
function σ by solving a matroid intersection problem.
Step 2. Find a basis of the row vectors of the submatrix Q(1)[RQ, C0] by collecting
independent row vectors according to the ordering with reference to pi in such a
manner that p1 ≤ p2 ≤ · · · ≤ pm. This ordering guarantees that W (s) of (5.1) is a
unimodular matrix. We denote the basis by RQ0.
Step 3. Output R0 = RQ0 ∪RT0 and C0, where RT0 = {i ∈ RT | Tij(s) 6= 0, j ∈ C0}.

The bottleneck part is Step 1, which requires O(n3 log n) arithmetic operations [5]
over K, where n = |C| and we assume |R| = O(n) for simplicity. The complexity can
be improved to O(n2.62) by adopting the algorithm of Gabow and Xu [9].

In Step 2, we have assumed that an ordering of rows h and h′ with ph = ph′ is
arbitrary. By determining this ordering based on q1, q2, . . . , qn, we prove the following
lemma.

Lemma 5.3. If D(s) =
(
Q(s)
T (s)

)
is a DCLM-matrix pencil, one can construct a CCF

of D(s) such that the horizontal tail D0(s) is also a DCLM-matrix pencil.

Proof. Since Q(s) is a matrix pencil, Q(1)[RQ, C0] is in the form of

Q0 =



Col(0) Col(1) · · · Col(γ − 2) Col(γ − 1)

Row(0) ∗ O · · · · · · O

Row(1) ∗∗ ∗
. . .

...

Row(2) O ∗∗
. . .

. . .
...

...
...

. . .
. . . ∗ O

...
...

. . . ∗∗ ∗
Row(γ) O · · · · · · O ∗∗


for some γ, where Row(h) = {i ∈ RQ | pi = h} and Col(h) = {j ∈ C0 | qj = h}. Here,
∗ and ∗∗ denote a constant matrix and a coefficient matrix of s, respectively.
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We can find a basis of the row vectors of the submatrix Q0[RQ, C0] by collecting
independent row vectors from the top row to the bottom row, as explained below.
We first find R0

∗ ⊆ Row(0) satisfying rankQ0[R0
∗,Col(0)] = rankQ0[Row(0),Col(0)],

which means that R0
∗ is a basis of Row(0). By row transformations, we obtain Q1

from Q0 such that

Q1[Row(0) ∪ Row(1), C0] =


← Col(0) → Col(1) · · ·

R0
∗ I ∗ ∗ O O

Row(0) \R0
∗ O O O O O

Row(1) O ∗∗ ∗∗ ∗ O

,
because the row vectors of Q0[Row(0)\R0

∗, C0] can be expressed as linear combinations
of those of Q0[R0

∗, C0].
Next, we find R1

∗∗ ⊆ Row(1) satisfying rankQ1[R1
∗∗,Col(0)] = rankQ1[Row(1),

Col(0)]. Then we obtain Q2 from Q1 such that

Q2[Row(0) ∪ Row(1), C0] =


← Col(0) → Col(1) · · ·

R0
∗ I ∗ ∗ O O

Row(0) \R0
∗ O O O O O

R1
∗∗ O I ∗∗ ∗ O

Row(1) \R1
∗∗ O O O ∗ O


by row transformations. Then, we apply the same procedure to Q2[RQ \ (Row(0) ∪
R1
∗∗), C0 \ Col(0)].

As a result, we obtain

Q′ =



Col(0) Col(1) · · · Col(γ − 2) Col(γ − 1)

Row(0)
I ∗ ∗
O O O

O · · · · · · O

Row(1)
O I ∗∗
O O O
O O O

∗ ∗ ∗
I ∗ ∗
O O O

. . .
...

Row(2) O
O I ∗∗
O O O

. . .
. . .

...

...
...

. . .
. . .

∗ ∗ ∗
I ∗ ∗
O O O

O

...
...

. . .
O I ∗∗
O O O
O O O

∗ ∗ ∗
I ∗ ∗
O O O

Row(γ) O · · · · · · O
O I ∗∗
O O O



,

where the row index sets of I in Q′[Row(h),Col(h)] and Q′[Row(h),Col(h−1)] corre-
spond toRh∗ andRh∗∗, respectively. This transformation preservesQ′[Row(h),Col(l)] =
O for any h, l satisfying 0 ≤ h ≤ γ, 0 ≤ l ≤ γ − 1, and h − l 6= 0, 1. We define
RQ0 =

⋃γ
i=1(Ri−1∗ ∪ Ri∗∗). Then RQ0 is a basis of the row vectors of Q′ as well as

Q(1)[RQ, C0] = Q0.
Let W be a nonsingular constant matrix such that Q′ = WQ0. We define W (s) in

(5.1) by W (s) = diag[sp1 , sp2 , . . . , spm ] ·W ·diag[s−p1 , s−p2 , . . . , s−pm ]. The horizontal
tail D0(s) is given by

D0(s) =

(
W (s)Q(s)[RQ0, C0]
T (s)[RT0, C0]

)
,

where RT0 is defined in Step 3 in the algorithm for computing D0(s).
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To prove that D0(s) is a matrix pencil, it suffices to show that W (s)Q(s)[RQ0, C0]
is also a matrix pencil, because T (s) is a matrix pencil. We now have

W (s)Q(s) = diag[sp1 , sp2 , . . . , spm ] ·WQ(1) · diag[s−q1 , s−q2 , . . . , s−qn ]

and WQ(1)[RQ, C0] = WQ0 = Q′. Hence W (s)Q(s)[RQ, C0] is a matrix pencil,
which implies that the submatrix W (s)Q(s)[RQ0, C0] of W (s)Q(s)[RQ, C0] is also
a matrix pencil. Moreover, D0(s) satisfies (MP-DC), because W (s)Q(s) satisfies
(MP-DC).

Example 5.4. Consider a DCLM-matrix pencil

D(s) =

1 1 0 s
s s 1 0

0 0 t1s t2


with respect to (Q,R), where {t1, t2} ⊆ R is algebraically independent over Q. By
setting W (s) = ( 1 0

−s 1 ), we obtain the CCF represented as 1 1 0 s

0 0 1 −s2
0 0 t1s t2

 .

The horizontal tail remains a matrix pencil, while the square block is not.

6. The Kronecker canonical form via CCF. In this section, we investigate
the Kronecker canonical form of DCLM-matrix pencils via the CCF decomposition.
For a DCLM-matrix pencil D(s) =

(
Q(s)
T (s)

)
of rank r, we construct its CCF D̃(s) so

that the horizontal tail D0(s) is also a DCLM-matrix pencil. The existence of such
CCF is assured by Lemma 5.3. The rank of D0(s) is denoted by r0.

Lemma 6.1. We have ψk(D) = ψk(D0) + k(r − r0).

Proof. We define D∗(s) = D̃(s)[R \ R0, C \ C0]. Since D∗(s) is of full-column
rank, it holds that ψk(D∗) = k|C \ C0| = k(r − r0) by Lemma 2.3. We also have
ψk(D̃) = ψk(D0) + ψk(D∗) by D̃(s)[R \ R0, C0] = O. By (3.1) and the definition
of an LM-admissible transformation (5.1), ψk(D̃) = ψk(D) holds. Thus we obtain
ψk(D) = ψk(D0) + k(r − r0).

We now investigate the Kronecker canonical form of D0(s).

Lemma 6.2. The monic determinantal divisor dr0(D0(s)) is a monomial in s.

Proof. By rankD0(s) = r0, we can apply Lemma 5.2 to dr0(D0(s)). Since the
CCF of D0(s) has no square blocks, dr0(D0(s)) is a monomial in s by
Lemma 5.2.

We obtain the following theorem on the sum of the minimal column indices.

Theorem 6.3. The sum of the minimal column indices of a DCLM-matrix pencil
D(s) is obtained by

p∑
i=1

εi = δr0(D0(s))− ζr0(D0(s)).(6.1)
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Proof. The horizontal tail D0(s) has the Kronecker canonical form, because D0(s)
is a matrix pencil by Lemma 5.3. By (2.8) and Lemma 6.1, the minimal column indices
of D(s) coincide with those of the horizontal tail D0(s). Let D̄0(s) be the Kronecker
canonical form of D0(s). Since D0(s) is of full-row rank, D̄0(s) contains no rectangular
blocks L>η . In addition, D̄0(s) does not contain a strictly regular block by Lemma 6.2.
Hence we obtain (6.1) by (2.6).

Theorem 6.3 indicates that the computation of
∑p
i=1 εi for a DCLM-matrix pencil

D(s) reduces to that of δr0(D0(s)) and ζr0(D0(s)). We now discuss the time complex-
ity of computing

∑p
i=1 εi of an m×n DCLM-matrix pencil D(s), assuming m = O(n)

for simplicity. Recall that the CCF of D(s) can be found in O(n2.62) time. Then one
can compute δr0(D0(s)) and ζr0(D0(s)) in O(r2.380 n0) time, where n0 = |C0|. Thus
the total running time bound is O(n2.62 + r2.380 n0). Note that r0 and n0 are smaller
(and sometimes much smaller) than n.

Theorem 6.3 combined with Theorem 4.3 enables us to compute the sum of the
minimal column indices of a DCM-matrix pencil, as explained below. Let DM(s) =
s(XQ + XT ) + (YQ + YT ) be an m × n DCM-matrix pencil and D(s) its associated
LM-matrix pencil defined by (4.3). We denote the structural indices of DM(s) by
(ν′, ρ′1, . . . , ρ

′
c′ , µ

′
1, . . . , µ

′
d′ , ε
′
1, . . . , ε

′
p′ , η

′
1, . . . , η

′
q′). It follows from Theorem 4.3 that∑p′

i=1 ε
′
i =

∑p
i=1 εi +

∑d
i=1 µi −

∑d′

i=1 µ
′
i −m. In the right-hand side,

∑p
i=1 εi of the

LM-matrix pencil D(s) can be computed by Theorem 6.3. We can also find
∑d
i=1 µi

of D(s) and
∑d′

i=1 µ
′
i of DM(s) based on (2.3), because δk is computed efficiently

as explained in section 4. It should be noted that, in the computation of δk, the
transformation from a mixed matrix pencil into an LM-matrix pencil is different from

(4.3). Thus we can obtain
∑p′

i=1 ε
′
i of the DCM-matrix pencil DM(s).

In order to compute the sum of the minimal row indices, we apply Theorems 4.3
and 6.3 to D(s)>, because the minimal row indices of D(s) coincide with the minimal
column indices of D(s)>.

We conclude this section with an example.

Example 6.4. Consider a DCM-matrix pencil DM(s) = ( t1 0 0
0 s t2s+1 ) with respect

to (Q,R), where {t1, t2} ⊆ R is algebraically independent over Q. Its associated LM-
matrix pencil D(s) is given by (4.2). The Kronecker canonical forms of DM(s) and
D(s) are in the forms of block-diag(N1, L1) and block-diag(N1, N1, L2), respectively.
As described below, we can find the sums of the minimal column indices without
computing the Kronecker canonical form, based on Theorems 4.3 and 6.3.

We first find the horizontal tail D0(s) = ( 1 s 1
−t4 0 t2s ) in the CCF of D(s) by the

procedure in section 5. Then it follows from Theorem 6.3 that∑
i

εi = δ2(D0(s))− ζ2(D0(s)) = 2− 0 = 2.

We can obtain
∑
i µi = 2 and

∑
i µ
′
i = 1 by executing any of the algorithms given in

[17, 27, 36] or reducing to a weighted matroid intersection problem [28, Remark 6.2.10].
Thus it follows from Theorem 4.3 that

∑
i ε
′
i = 2 + 2− 1− 2 = 1.

7. Application to controllable subspace. Consider a linear time-invariant
dynamical system in a descriptor form

(7.1) F ẋ(t) = Ax(t) +Bu(t),

where F and A are n×n matrices and B is an n× l matrix. For the unique solvability,
we assume that A − sF is a regular matrix pencil. In this section, we present an
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application of our main result to controllability analysis of (7.1) with
(
A− sF | B

)
being a DCM-matrix pencil.

Van Dooren [41] introduced the controllable subspace of (7.1) defined by

C = inf{S | dim(FS +AS) = dimS, imB ⊆ FS +AS},

where the infimum can be proven to exist. In fact, the controllable subspace C is
obtained as follows. With an appropriate nonsingular constant matrix S, one can
transform

(
A− sF | B

)
into

S
(
A− sF | B

)
=

(
A0 − sF0 O
∗ B0

)
so that B0 is of full-row rank. Since A0 − sF0 is of full-row rank, its Kronecker
canonical form does not contain L>η blocks. Therefore one can further transform
A0 − sF0 with an appropriate pair of nonsingular constant matrices U and V into

U
(
A0 − sF0

)
V =

(
A1 − sF1 O

O A2 − sF2

)
,

where A1− sF1 is regular and the Kronecker canonical form of A2− sF2 consists only
of Lε blocks. Then the column index set of A2 − sF2 corresponds to the controllable
subspace C, and the number of columns is equal to dim C.

The system (7.1) is controllable iff dim C = n. Murota [23] presented a matroid-
theoretic algorithm for testing the controllability of a dynamical system (7.1) described
by a DCM-matrix pencil

(
A− sF | B

)
. The algorithm, however, does not provide the

dimension of the controllable subspace.
The following lemma shows that dim C is characterized by the rank of the

(n+ 1)n× (n2 + nl + l) matrix

Σ(F,A,B) =



B −F O O · · · O O O O

O A B −F
. . .

...
...

...
...

O O O A
. . . O O O O

O O O O
. . . −F O O O

...
...

...
...

. . . A B −F O
O O O O · · · O O A B


.

Lemma 7.1. It holds that dim C = rank Σ(F,A,B)− n2.

Proof. We denote the row index sets of A1 − sF1, A2 − sF2, and B0 by R1, R2,
and R3. Since A1 − sF1 is a regular matrix pencil, we have dim C = n− |R1|.

The rank of Σ(F,A,B) is invariant under the above equivalence transformation.

By putting Â =
(
A1 O
O A2
∗ ∗

)
, F̂ =

(
F1 O
O F2
∗ ∗

)
, and B̂ =

(
O
O
B0

)
, we have rank Σ(F,A,B) =

rank Σ(F̂ , Â, B̂). Since B0 is of full-row rank, we have

rank Σ(F̂ , Â, B̂) = (n+ 1)|R3|+ rank Ψn

((
A1 O
O A2

)
− s

(
F1 O
O F2

))
= (n+ 1)|R3|+ rank

(
Ψn(A1 − sF1) O

O Ψn(A2 − sF2)

)
.
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Since A1 − sF1 is regular, it follows from Lemma 2.3 that ψn(A1 − sF1) = n|R1|.
By (2.8), we have ψn(A2 − sF2) = n|R2|+

∑p′

i=1 min{n, ε′i} = n|R2|+
∑p′

i=1 ε
′
i, where

ε′1, ε
′
2, . . . , ε

′
p′ denote the minimal column indices of A2 − sF2. Since the Kronecker

canonical form of A2 − sF2 consists only of rectangular blocks Lε, it holds that∑p′

i=1 ε
′
i = |R2|. Thus we obtain rank Σ(F,A,B) = (n+1)|R3|+n|R1|+(n+1)|R2| =

n2 + dim C by n = |R1|+ |R2|+ |R3| and dim C = n− |R1|.
The following theorem states that if F is nonsingular, the computation of dim C is

reduced to the computation of the sum of the minimal column indices of
(
A− sF | B

)
.

Theorem 7.2. Let C be the controllable subspace of the system (7.1), and ε1,
ε2, . . . , εp be the minimal column indices of a matrix pencil D(s) =

(
A− sF | B

)
. If

F is nonsingular, the dimension of C is given by dim C =
∑p
i=1 εi.

Proof. Since we have

Ψn+1(D) =


−F O · · · O
A
O
...
O

Σ(F,A,B)

 ,

ψn+1(D) = n + rank Σ(F,A,B) holds by the nonsingularity of F . Then ψn+1(D) =
n(n+1)+

∑p
i=1 min{n+1, εi} = n2+n+

∑p
i=1 εi follows from (2.8) and rankD(s) = n.

Thus we obtain dim C = rank Σ(F,A,B) − n2 = ψn+1(D) − n − n2 =
∑p
i=1 εi by

Lemma 7.1.

By Theorem 7.2, if F is nonsingular, the computation of the dimension of the
controllable subspace C is reduced to that of the sum of the minimal column indices
of D(s) =

(
A− sF | B

)
. If in addition D(s) is a DCM-matrix pencil, one can obtain

dim C by solving a weighted matroid intersection problem as described in section 6.

8. Conclusion. For mixed matrix pencils satisfying the assumption on dimen-
sional consistency, we have characterized the sums of the minimal row/column indices
of the Kronecker canonical form. An efficient matroid-theoretic algorithm for com-
puting them is derived from this characterization. The algorithm can be used to
compute the dimension of the controllable subspace in a linear time-invariant system
(7.1) whose coefficient matrix F is nonsingular. An extension to the case of singular
F is left for future investigation.

Our ultimate target is to present an algorithm based on structural approach for
computing the minimal row/column indices. We anticipate that the characterization
of the sums is useful for design of such algorithms.
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