
SIAM J. OPTIM. c© 2017 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 269–291

SOLVING THE TRUST-REGION SUBPROBLEM
BY A GENERALIZED EIGENVALUE PROBLEM∗

SATORU ADACHI† , SATORU IWATA† , YUJI NAKATSUKASA‡ , AND AKIKO TAKEDA§

Abstract. The state-of-the-art algorithms for solving the trust-region subproblem (TRS) are
based on an iterative process, involving solutions of many linear systems, eigenvalue problems, sub-
space optimization, or line search steps. A relatively underappreciated fact, due to Gander, Golub,
and von Matt [Linear Algebra Appl., 114 (1989), pp. 815–839], is that TRSs can be solved by
one generalized eigenvalue problem, with no outer iterations. In this paper we rediscover this fact
and discover its great practicality, which exhibits good performance both in accuracy and efficiency.
Moreover, we generalize the approach in various directions, namely by allowing for an ellipsoidal con-
straint, dealing with the so-called hard case, and obtaining approximate solutions efficiently when
high accuracy is unnecessary. We demonstrate that the resulting algorithm is a general-purpose
TRS solver, effective both for dense and large-sparse problems, including the so-called hard case.
Our algorithm is easy to implement: its essence is a few lines of MATLAB code.

Key words. trust-region subproblem, generalized eigenvalue problem, elliptic inner product,
hard case

AMS subject classifications. 49M37, 65K05, 90C25, 90C30

DOI. 10.1137/16M1058200

1. Introduction. The trust-region subproblem (TRS) [4], [26, Chap. 4] is to

(1) minimize
‖p‖B≤∆

g>p+
1

2
p>Ap,

where A,B ∈ Rn×n are symmetric, g ∈ Rn, ∆ > 0, and B is symmetric positive
definite. Trust-region methods are a popular approach to dealing with general non-
linear optimization problems to minimize f(x), in which each iteration requires an
(approximate) solution for TRS (1). In a trust-region method, the objective function
of TRS (1) is a quadratic model of f near the current approximate solution x̃, in
which A is the Hessian and g is the gradient of f at x̃. Note that we allow for the con-
straint ‖p‖B ≤ ∆ in an ellipsoidal norm, defined by ‖p‖B = ‖B1/2p‖ =

√
p>Bp for a

positive definite matrix B, not necessarily equal to the identity I. An appropriate and
nontrivial choice B 6= I can be important, for example, when working in a properly
scaled trust region to solve the nonlinear problem efficiently [23]. For example, in
[4] it is argued that a good choice would be to take B = |A|, the Hermitian polar
factor [17] of A. For more on trust-region methods and TRS, see the book [4].

∗Received by the editors January 25, 2016; accepted for publication (in revised form) November
21, 2016; published electronically February 22, 2017.

http://www.siam.org/journals/siopt/27-1/M105820.html
Funding: The work of the second, third, and fourth authors was supported by Grants-in-Aid for

Scientific Research (Challenging Exploratory Research, 26540007) from Japan Society for Promotion
of Science. The work of the third author was supported by Japan Society for Promotion of Science
as Postdoctoral Fellow for Research Abroad.
†Department of Mathematical Informatics, The University of Tokyo, Tokyo 113-8656, Japan

(satoru adachi@mist.i.u-tokyo.ac.jp, iwata@mist.i.u-tokyo.ac.jp).
‡Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK (nakatsukasa@maths.ox.ac.

uk).
§Department of Mathematical Analysis and Statistical Inference, The Institute of Statistical

Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan (atakeda@ism.ac.jp).

269

http://www.siam.org/journals/siopt/27-1/M105820.html
mailto:satoru_adachi@mist.i.u-tokyo.ac.jp
mailto:iwata@mist.i.u-tokyo.ac.jp
mailto:nakatsukasa@maths.ox.ac.uk
mailto:nakatsukasa@maths.ox.ac.uk
mailto:atakeda@ism.ac.jp

270 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

The necessary and sufficient optimality condition for TRS (1) is the following
theorem.

Theorem 1.1. A vector p∗ is an optimal solution to the TRS (1) if and only if
there exists λ∗ ≥ 0 such that

‖p∗‖B ≤ ∆,(2)

(A+ λ∗B)p∗ = −g,(3)

λ∗(∆− ‖p∗‖B) = 0,(4)

A+ λ∗B � 0.(5)

Equations (2)–(5) are mentioned in [4, Thm. 7.4.1] and [15] as a necessary con-
dition. Theorem 1.1 is well known when B = I, and it can be obtained by using a
change of variables in the discussion in Gay [11] and Moré and Sorensen [25] (see also
[26, Chap. 4]) to allow for a general B � 0.

Most existing algorithms for the TRS focus on B = I and attempt to find a TRS
solution (λ∗, p∗) in Theorem 1.1 by an iterative process, during which a parameter
such as an estimate for λ∗ is updated. Algorithms for TRS can be classified into three
broad categories as we summarize below, together with the representative studies.

1. Accurate methods for dense problems. The classical algorithm by Moré and
Sorensen [25] iteratively solves symmetric positive-definite linear systems via
the Cholesky factorization. During the iteration the estimate for λ∗ is ad-
justed. Safeguard techniques are sometimes necessary to ensure convergence
to the solution. This is the standard approach for moderate-sized problems,
say n ≤ 1000.

2. Accurate methods for large-sparse problems. Sorensen’s algorithm [35], refined
and implemented by Rojas, Santos, and Sorensen [32, 33], iteratively com-

putes the smallest eigenvalue of a parameterized matrix of the form
[
α g>

g A

]
,

where α is a parameter adjusted during the iteration to find the solution.
Again, a safeguard technique is needed to guarantee convergence. Another
approach due to Rendl and Wolkowicz [30] solves TRS via semidefinite pro-
gramming (SDP), for which the standard solver based on the interior-point
method also involves an iteration of linear systems [2]. A modification of the
Moré–Sorensen algorithm using Taylor series is presented by Gould, Robin-
son, and Thorne [15], and other accurate algorithms include subspace projec-
tion methods, such as Hager [16] and Erway and Gill [6].

3. Approximation methods. The Steihaug–Toint algorithm [36, 39] is a well-
known method that employs a truncated conjugate gradient step (see [4,
sect. 7.5]). Also known is the approach by Gould et al. [13] using truncated
Lanczos steps. These algorithms allow one to pursue the practical goal of
reducing the overall cost of solving the nonlinear optimization problem via
TRS, in which a sufficient reduction in the objective value (1) is usually
adequate, and finding the exact minimizer of TRS is unnecessary. Other
approaches that iteratively solve the TRS approximately include the dogleg
method [26, sect. 4.1] and DC-based algorithms [38].

All these algorithms require iterations of a computational routine, and the number
of iterations is often unpredictable and potentially large.

One exception to the iteration-based methods was proposed in 1989 by Gander,
Golub, and von Matt [10], which reduces TRS to a single quadratic eigenvalue prob-
lem, which they linearize to obtain a standard eigenvalue problem of size 2n. However,

TRS VIA GEP 271

in that paper they report that their eigenvalue-based approach is slower and less accu-
rate than Moré–Sorensen’s algorithm. This is perhaps why this approach appears to
have received less attention by TRS researchers than those mentioned above; another
reason may be that the paper [10] revolves around (constrained) eigenvalue problems
rather than TRS.

The algorithm we advocate here, however, results in an extension of [10], which
turns out to be both efficient and accurate. Apparently, the slow speed and loss of
accuracy reported in [10] was largely due to the relatively unrefined eigenvalue solver
available those days. We demonstrate that the accuracy and speed are both dra-
matically improved by the highly developed eigensolvers available today, such as the
shift-and-invert Arnoldi method [20]. Our MATLAB experiments demonstrate that
our algorithm has excellent accuracy and competitive speed compared with existing
algorithms in the standard case B = I with large-sparse A.

Our approach, based on a different derivation from [10], further extends the al-
gorithm by allowing B 6= I and preserving symmetry. Moreover, the paper [10] does
not discuss how to deal with the “hard case,” which are TRS whose λ∗ is equal to the
largest eigenvalue of the pencil A+ λB (which implies by (3) that g ⊥ N (A+ λ∗B),
where N (A+λ∗B) denotes the null space of A+λ∗B). In this paper we treat the hard
case in detail, and illustrate that our algorithm solves the hard case efficiently with
high accuracy. We also demonstrate its effectiveness for computing an approximate
solution efficiently.

Note that the lack of iterations makes our algorithm easy to implement (its essence
is a few lines of MATLAB code), and the runtime predictable. Moreover, difficulties
associated with iterations—such as the need for safeguard techniques—simply dis-
appear. Overall, this paper introduces a practical, general-purpose TRS algorithm,
useful for a wide range of problems, from dense-medium sized to large-sparse; we have
experimented successfully with problems of size up to 107.

The algorithms in [25, 30] are designed for B = I, and so are most publi-
cally available codes [30, 33]. Algorithms applicable to B 6= I are discussed in [4,
sect. 7.5.6], [13, 15], but these algorithms are approximate and/or iterative. The tra-
ditional approach to deal with B 6= I is to reduce the problem to an equivalent one
with B = I by a change of variables: defining p̃ := B

1
2 p, one can reduce (1) to an

equivalent TRS with B = I, i.e., the minimization of (B−
1
2 g)>p̃+ 1

2 p̃
>(B−

1
2AB−

1
2)p̃

subject to ‖p̃‖ ≤ ∆. However, this reduction involves computing the matrix square
root or the Cholesky factor of B and their inverse, which can be expensive and nu-
merically unstable. Furthermore, the conversion to B−

1
2AB−

1
2 generally destroys

the problem structure: e.g., the inverse of an irreducible tridiagonal matrix is dense
(matrix-free algorithms such as [32] avoids forming B−

1
2AB−

1
2 by working with the

(sparse) Cholesky factor of B). Our algorithm works directly with A,B and thus
takes full advantage of the sparsity.

Besides choosing B to reflect the geometry of the problem such as B ≈ |A|,
another situation where an ellipsoidal norm arises is when a standard TRS with
B = I is solved via the Steihaug–Toint conjugate gradient-based algorithm [36, 39]
with preconditioning. We note that in [5] it is suggested that precautions are needed
when such change of the inner product is employed, as it can alter the quality of the
solution. This also indicates the importance of the choice of B. This paper makes no
claims on how to choose B, but rather takes it as given, and we focus on solving the
TRS (1).

Our algorithm can be regarded as an extension of a related eigenvalue-based algo-

272 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

rithm in [19] for the point-ellipsoid distance problem, which minimizes ‖x‖2 subject
to the constraint that x lies on the boundary of an ellipsoid. This problem has a
convex objective but a nonconvex constraint, and a generalized eigenproblem is de-
rived in [19] that yields a global solution. We note that Rimon and Boyd [31] also
suggests using the algorithm by Gander, Golub, and von Matt [10] mentioned above
for computing point-ellipsoid distances.

Along with [19], this work was initially inspired by the fact that some quadratic
optimization problems lead to polynomial equations, as follows. Consider TRS in
the simple case B = I and let A = V DV > be the eigenvalue decomposition with
eigenvalues di, i = 1, . . . , n. We focus on the solution with ‖p∗‖ = ∆, which is
generally the more difficult case than interior solutions ‖p∗‖ < ∆ (see section 2.1).
Then by (3) we have p∗ = −V (D+λI)−1V >g, and writing out the condition ‖p∗‖ = ∆
and defining ĝ = V >g, one sees that the solution can be obtained via a rational
equation in λ of the form

(6) ∆2 =

n∑
j=1

ĝ2j
(dj + λ)2

.

This equation has been presented in the literature [11, 25, 26], but is usually treated
as a “difficult” nonlinear equation that needs to be solved through an iterative pro-
cess. Nonetheless, (6) is nothing else than a rational rootfinding problem, which can
mathematically be reduced to a polynomial rootfinding problem by multiplying out∏n
j=1(dj +λ)2, which can then be solved by a single eigenvalue problem via lineariza-

tion such as the companion matrix, without iterations (except those used within the
eigensolver). Although this “polynomialization” is usually not recommended due to
numerical instability (and we will not pursue it), this observation does suggest that a
method based on iterations is perhaps unnecessary.

This paper is organized as follows. In section 2 we detail the optimality conditions
and the KKT conditions. We then describe our main algorithm in section 3. Section 4
discusses how to deal with the hard case. We summarize the algorithm in pseudocode
in section 5. In section 6 we compare our algorithm with existing methods. Section 7
shows numerical experiments to illustrate and compare the performance.

Notation. Throughout this paper, R(X) denotes the range of a matrix X, and
N (X) the null space. In addition, X � 0 indicates X is a positive semidefinite matrix,
In is the n × n identity, and On, Om×n are the n × n and m × n zero matrices; we
simply write I,O if the dimensions are clear from the context. We always denote a
TRS solution by p∗ with associated Lagrange multiplier λ∗. Computed approximants
wear a hat, so, for example, p̂∗ is a computed approximant to p∗. We denote by u the
unit roundoff, u ≈ 1.1× 10−16 in double precision arithmetic.

2. Interior and boundary solutions. Equation (4) shows that a TRS solution
(λ∗, p∗) belongs to either (or both) of the following two cases, known as complementary
slackness: λ∗ = 0, or ∆ − ‖p∗‖B = 0. In view of this, we separate the TRS solution
into the following two types:

(i) an interior solution with ‖p∗‖B < ∆,
(ii) a boundary solution ‖p∗‖B = ∆.

We must have λ∗ = 0 in case (i). The “hard case” arises in the boundary case (ii), if
we further have det(A+ λ∗B) = 0; see section 4.

Below we first discuss how to deal with an interior solution, and then treat the
boundary solutions (ii). Our algorithm by default proceeds by executing both steps

TRS VIA GEP 273

to find one or two candidates, and obtains a TRS solution by comparing the objective
value.

2.1. Interior solutions. An interior solution clearly satisfies λ∗ = 0 by (4).
Obtaining an interior solution is done by solving the linear system Ap0 = −g for p0.
We then check if the constraint ‖p0‖B < ∆ is satisfied. If it is, then p0 is a candidate
for an interior TRS solution.

If further A � 0, then p0 is indeed the TRS solution, If A has negative eigenvalues,
by (5), p0 is not a TRS solution. Similarly, if A � 0 has a zero eigenvalue, then solving
the linear system Ap0 = −g becomes nontrivial, but a TRS solution must exist on
the boundary (case (ii)). In practice, checking the positive definiteness of A may be
a costly operation (requiring O(n3) if A is dense), so instead, we simply attempt to
solve Ap0 = −g using a direct solver or preconditioned CG, and keep p0 as a candidate
if ‖p0‖B < ∆ and discard it if not.

2.2. Boundary solutions. The first three, (2)–(4), of the TRS optimality con-
ditions in Theorem 1.1 represent the KKT conditions. The last, (5), specifies which
of the many (up to 2n, as we discuss in section 3.2) KKT multipliers corresponds to
the solution; we will show it is the largest real one.

By (3), for any KKT multiplier λ, unless the matrix A + λB is singular we can
write p as a function of λ as

(7) p(λ) = −(A+ λB)−1g.

Since we focus on the case ‖p‖B = ∆, plugging (7) into this equation we obtain

(8) g>(A+ λB)−1B(A+ λB)−1g = ∆2.

Now we regard A+ λB as a matrix pencil with eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn, and
let W be the matrix that achieves the simultaneous diagonalization by congruence [12,
sect. 8.7]

(9) W>(A,B)W = (Λ, I),

where Λ = −diag(µ1, . . . , µn); note the minus sign as here we define µi as the eigen-
values of the pencil A+ λB, not A− λB. Then (8) can be written as

(10) (W>g)>(Λ+ λI)−2(W>g)−∆2 = 0.

We write W = [w1, . . . , wn] and define

(11) h(λ) :=

n∑
j=1

(w>j g)2

(λ− µj)2
−∆2.

Equation (10) can be written as a zero-finding problem h(λ) = 0, which is a rational
equation with respect to λ, analogous to (6). This equation has 2n solutions in C
(counting multiplicities), and it is possible that they are all real.

We do not work directly with h(λ) = 0 as in (11), because this would require the
computation of the eigenvector matrix W , which is quite expensive, and the resulting
method is not as accurate as the one we propose. Our aim is to construct a generalized
eigenvalue problem whose eigenvalues contain the values of λ satisfying (11), as we
describe next.

274 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

3. Eigenvalue-based algorithm for boundary TRS solutions. We now
come to the heart of the paper where we discuss finding a boundary TRS solution via
one generalized eigenvalue problem.

3.1. Key matrix pencils. The starting point is to introduce two matrix pencils
whose eigenvalues include the desired KKT multiplier λ∗. Define the (2n+1)×(2n+1)
matrix pencil

(12) M(λ) =

∆2 0 g>

0 −B A+ λB
g A+ λB On

and the 2n× 2n matrix pencil

(13) M̃(λ) =

[−B A+ λB

A+ λB − gg
>

∆2

]
.

The crucial facts that we prove are (i) the eigenvalues of these pencils include
the values of λ satisfying the KKT conditions, and (ii) we can obtain the solution
(λ∗, p∗) via the largest real eigenpair. We first examine the connection between the
eigenvalues and λ∗, and then discuss how to obtain p∗.

3.2. Finding λ∗. We show that all the Lagrange multipliers at the KKT points
(λ, p) on the boundary ‖p‖B = ∆, including the desired λ∗, are contained in the
eigenvalues of M(λ) and M̃(λ).

Lemma 3.1. For any (λ, p) satisfying (A + λB)p = −g and ‖p‖B = ∆, we have
detM(λ) = det M̃(λ) = 0.

Proof. If det(A + λB) = 0 at λ with (A + λB)x = 0, then it follows from g ∈
R(A+λB) thatM(λ)

[
0n+1
x

]
= 0 and M̃(λ)

[
0n
x

]
= 0, hence detM(λ) = det M̃(λ) = 0.

We now deal with λ such that det(A+λB) 6= 0. Define p(λ) = −(A+λB)−1g as
in (7), and

X(λ) =

 1
p(λ) I

I

 .
Then X(λ) is unimodular, i.e., detX(λ) ≡ 1, and we have

detM(λ) = detX(λ)TM(λ)X(λ)(14)

= det

∆2 − p(λ)>Bp(λ) −p(λ)>B 0
−Bp(λ) −B A+ λB

0 A+ λB O

= (−1)n det(A+ λB)2{∆2 − p(λ)>Bp(λ)}.(15)

If (λ, p(λ)) satisfies ‖p(λ)‖B = ∆ and det(A + λB) 6= 0, then recalling (8) we have
∆2 − p(λ)>Bp(λ) = 0, and so detM(λ) = 0. This proves detM(λ) = 0.

To prove det M̃(λ) = 0, we define

T =

1 − 1
∆2 g

>

In
In

TRS VIA GEP 275

and see that

(16) T>M(λ)T =

∆2

−B A+ λB
A+ λB − 1

∆2 gg
>

 =

[
∆2

M̃(λ)

]
.

It follows that detM(λ) = ∆2 det M̃(λ), and, hence together with the above result,
det M̃(λ) = detM(λ) = 0.

Fortunately, both matrix pencils M(λ) and M̃(λ) are regular matrix pencils, that
is, their determinants are nonzero for some λ and the number of eigenvalues is equal
to their size. To see this, observe that M̃(∞) :=

[
On B
B On

]
is nonsingular, and that

M̃(λ) is obtained from M(λ) by taking its Schur complement. Therefore, the number
of eigenvalues is finite, more precisely, 2n + 1 and 2n, respectively, and 2n of them
match the 2n roots of the rational equation (11). Note that 2n, the size of the matrix
pencil M̃(λ), is the smallest possible, since (11) is a rational equation that can be
reduced to a degree-2n polynomial equation with 2n solutions. Each real eigenvalue
λ of M(λ) corresponds to a KKT point p = (A+ λB)−1g with KKT multiplier λ.

Lemma 3.1 shows that the TRS solution on the boundary satisfies detM(λ) = 0
and det M̃(λ) = 0, both representing a generalized eigenvalue problem. The eigen-
values λ contain the Lagrange multipliers at the KKT points, so the multiplier for
the TRS solution must be one of the 2n finite eigenvalues (note that M(λ) has one
eigenvalue at infinity, which is not the one of interest).

We next show that among these 2n finite eigenvalues, λ∗ corresponds to the largest
real one lying in [µn,∞).

Theorem 3.2. For a TRS solution (λ∗, p∗) on the boundary ‖p∗‖B = ∆ satisfy-
ing (2)–(5), the multiplier λ∗ is equal to the largest real eigenvalue of M(λ) (excluding
λ =∞) and M̃(λ), and λ∗ ∈ [µn,∞), where µn is the largest eigenvalue of the pencil
A+ λB.

Proof. The fact λ∗ = λmax ∈ [µn,∞) has been shown in [7, 19] for special cases:
[7] for B = I and [19] for A = I; see also [24]. By a change of variables we can extend
these results to the TRS (1).

Alternatively, we can directly obtain the result as follows. First, from A+λ∗B � 0
in (5) we must have λ∗ ≥ µn.

Recall from (11) that ‖p(λ∗)‖B = ∆ is equivalent to h(λ∗) = 0, unless λ∗ = µn.
To prove that λ∗ is the largest real eigenvalue of M(λ), we consider the two cases
λ∗ > µn and λ∗ = µn separately. First, when λ∗ > µn, we have h(λ∗) = 0 and
det(A+λ∗B) > 0 in (15). Note from (11) that h(λ) is strictly decreasing on (µn,∞).
Hence, M̃(λ) has exactly one real eigenvalue larger than µn, which must be λ∗.

Next, when λ∗ = µn (this is the “hard case”), from (3) we see that g ⊥ N (A +
λ∗B), and so h(λ) has no pole at λ = µn, and strictly decreasing on (µn−`,∞), where
`(≥ 1) is the integer such that µn−` < µn−`+1 = · · · = µn. Hence, h(λ∗) is formally

defined as h(λ∗) =
∑n−`
j=1

(w>j g)
2

(µn−µj)2 −∆
2. Now h(λ∗) + ∆2 =

∑n−`
j=1

(w>j g)
2

(µn−µj)2 is equal

to the smallest ‖p‖2B such that (A + λB)p = −g (we prove this in (24)). Therefore,
if h(λ∗) > 0, then no solution exists with (3) and ‖p∗‖B = ∆. Hence, h(λ∗) ≤ 0,
and since h(λ) is strictly decreasing on (µn−`,∞), there is no solution for h(λ) = 0
with λ > µn, that is, λ∗ is the largest real eigenvalue of M(λ) and M̃(λ) also in this
case.

3.3. Obtaining p∗. We next show that, generically, the TRS solution p∗ can be
obtained from the eigenvector of M(λ) and M̃(λ) corresponding to λ∗.

276 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

Theorem 3.3. The eigenvectors of M(λ) and M̃(λ) for the largest real eigenvalue
λ = λ∗ correspond one-to-one as

(17) M̃(λ∗)

[
y1
y2

]
= 0⇔M(λ∗)

− 1
∆2 g

>y2
y1
y2

 = 0.

Moreover, if g>y2 6= 0, then a TRS solution p∗ can be obtained by

(18) p∗ = − ∆2

g>y2
y1.

Proof. We prove that (17) holds for every finite eigenvalue λ of M(λ). By the
congruence relation (16), we see that if

[y1
y2

]
is an eigenvector of M̃(λ), then

(19) M̃(λ)

[
y1
y2

]
= 0 ⇒ M(λ)

− 1
∆2 g

>y2
y1
y2

 = 0.

For the converse, suppose that M(λ)
[
t
y1
y2

]
= 0. Then since T in (16) is nonsingular

with

T−1 =

1 1
∆2 g

>

In
In

 ,
we have

M(λ)

 ty1
y2

 = T−>
[
∆2

M̃(λ)

]
T−1

 ty1
y2

 = T−>

∆2(t+ 1
∆2 g

>y2)

M̃(λ)

[
y1
y2

] = 0,

thus M̃(λ)
[y1
y2

]
= 0 and t = − 1

∆2 g
>y2. Now noting that M(λ)

[
t
y1
y2

]
= 0 with

[y1
y2

]
6= 0

can hold only for λ =∞, we obtain the first statement (17).
We next prove (18). From M̃(λ∗)

[y1
y2

]
= 0, that is,

(20)

[−B A

A − gg
>

∆2

] [
y1
y2

]
= −λ∗

[
O B
B O

] [
y1
y2

]
,

the lower block gives (A+λ∗B)y1 = g(g>y2)
∆2 , which is a scalar multiple of g. Therefore,

in view of (A + λ∗B)p∗ = −g from (3), we obtain (18) as required, provided that
g>y2 6= 0.

Practical extraction of p∗. In practice, computing the solution p∗ from the
normalization (18) may introduce unnecessary numerical errors, and we choose the
simpler normalization

(21) p∗ = −sign(g>y2)∆
y1
‖y1‖B

,

which is on the boundary to working precision: ‖p̂∗‖B = ∆+O(u). The normalization
(21) is obtained by scaling the vector y1 (which is parallel to the solution p∗) to have
B-norm ∆.

When g>y2 = 0, finding the solution is not straightforward; this is described in
section 4.

TRS VIA GEP 277

3.4. Observations for a practical implementation.

3.4.1. The rightmost eigenvalue is real. We have seen that λ∗ at the TRS
solution is equal to the largest real eigenvalue of M(λ) and M̃(λ). For the eigensolver
it helps to further know that λ∗ is indeed the rightmost eigenvalue, that is, there is
no nonreal eigenvalue that lies to the right of λ∗.

Proposition 3.4. The rightmost eigenvalues of M̃(λ) and M(λ) (excluding ∞)
are both real and equal to λ∗.

Proof. It suffices to show that the rightmost eigenvalue of M̃(λ) is real. Suppose
that λ̃ = α + βi where α, β ∈ R, α > µn, and β > 0 is a nonreal eigenvalue. Then
α − βi must also be an eigenvalue. Now if α > λ∗ ≥ µn, then recalling (11) we have

h(λ) =
∑n
j=1

(w>j g)
2

(λ−µj)2 −∆
2, and since the imaginary part of 1

(λ̃−µj)2
is strictly negative

for all j, we conclude that the imaginary part of h(λ̃) must also be strictly negative.
Hence, h(λ̃) cannot be 0, so λ̃ is not an eigenvalue of M̃(λ).

The above discussion proves the statement except when α = µn = λ∗, that is, to
exclude λ̃ = λ∗ + βi in the hard case. In this case, we note that the terms w>j g must

be zero for all indices j such that λj = λ∗. For the remaining indices, w>j g cannot be

all zeros (since W is nonsingular), and again we have Im(1
(λ̃−µj)2

) < 0.

We have shown that the TRS solution can be obtained from the rightmost (which
is the largest real) eigenpair of M(λ) or M̃(λ), which is generally much cheaper
to compute than the whole eigenvalues via the standard QR or QZ algorithms; for
example, the Arnoldi algorithm provides an effective means for computing extremal
eigenvalues of large-sparse matrices.

3.4.2. Which matrix pencil to use, M(λ) or M̃(λ)?. The generalized eigen-
value problem M(λ) has one additional eigenvalue at∞, but the matrices involved are
explicitly sparse. On the other hand, M̃ is one size smaller with no eigenvalue at in-
finity, but contains gg>, which is rank-one but dense. Thus the choice between M and
M̃ should be made based on the properties of the eigensolver available. Some eigen-
solvers, such as MATLAB’s eigs, which is based on (shift-and-invert) Arnoldi [20],
allow the user to provide just a routine that multiplies the matrices to a vector; in
this case the rank-one structure can be exploited. For this reason we use M̃ in our
MATLAB experiments.

3.4.3. Comparison with the algorithm by Gander, Golub, and von
Matt. The algorithm by Gander, Golub, and von Matt [10] considers the case B = I
and finds the largest eigenvalue of the 2n×2n standard but nonsymmetric eigenvalue
problem

(22)

[
A −I
− gg

>

∆2 A

] [
y2
y1

]
= −λ∗

[
y2
y1

]
.

This is a nonsymmetric matrix, with a dense bottom-left block. We can obtain (22)
when B = I by the equivalence transformation of right-multiplying

[
O In
In O

]
to M̃ .

Therefore, we arrived at a different derivation of (22) and generalized it to B 6=
I. In [10] solving TRS via (22) is not recommended over Moré–Sorensen’s secular
equation approach [22], observing the inefficiency and inaccuracy with (22) in their
experiments.

As we shall see in our experiments, the poor performance seems to have been
largely due to the relatively undeveloped eigenvalue solvers available at the time:

278 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

with state-of-the-art eigensolvers the algorithm is both fast and accurate. Between
solving M̃(λ∗)

[y1
y2

]
= 0 and (22), the speed comparison depends on the architecture

etc: in our experiments (22) was often slightly faster, so a reasonable option is to turn
to (22) when B = I. In any case, our experiments illustrate that by solving (20),
our algorithm has efficiency comparable to the state-of-the-art algorithms. We do not
claim to have a faster algorithm than [10] when B = I (when employing the same
eigensolver), but instead we observe its practicality and extend it to B 6= I, and treat
the hard case.

4. Dealing with the “hard case”. We saw in Theorem 3.3 that a TRS solution
(λ∗, p∗) can be obtained via the rightmost eigenpair of M(λ) provided that g>y2 6= 0.
We now discuss the case where this does not hold, i.e., g>y2 = 0. In this case λ∗
is still obtained as the rightmost eigenvalue of M̃(λ) by Theorem 3.2, but finding p∗
requires more work.

We show that the condition g>y2 = 0 can happen only if λ∗ = µn.

Proposition 4.1. In the setting of Theorem 3.3, g>y2 = 0 only if λ∗ = µn.

Proof. Recall from (20) that g>y2 = 0 implies (A + λ∗B)y1 = 0. From the first
block of (20), we obtain

(23) −By1 + (A+ λ∗B)y2 = 0,

and hence (A+λ∗B)B−1(A+λ∗B)y2 = 0. Using the diagonalization W>(A,B)W =
(Λ, I), this yieldsW>(λ∗I+Λ)2Wy2 = 0, from which we obtainW>(λ∗I+Λ)Wy2 = 0.
This is equivalent to (A+ λ∗B)y2 = 0, which, by (23), also implies y1 = 0. Hence, y2
is a nonzero eigenvector of A+ λB corresponding to the eigenvalue λ∗ = µn.

Note that the proof also shows that if g>y2 = 0, then y1, which we usually
use to extract the solution p∗, is zero. Also note from (3) that λ∗ = µn implies
g ⊥ N (A + λ∗B). Hence, g>y2 = 0 implies λ∗ = µn, which in turn implies g ⊥
N (A+ λ∗B). This is the so-called “hard case,” a difficulty that is known to arise in
the standard B = I case, and it is of course also present when B � 0 is a general
positive definite matrix. We restate the definition for general B � 0.

Definition 4.2. A TRS (1) is said to be in the “hard case” if λ∗ = µn, the
largest eigenvalue of the pencil A+ λB.

We repeat that λ∗ = µn implies g ⊥ N (A+ λ∗B), which some papers take to be
the definition.

It is worth noting that the last condition pertains to the orthogonality between g
and the eigenvectors corresponding to the largest eigenvalue of A+λB in the standard
inner product, not B-orthogonal w>i Bg = 0 as one might expect since the TRS (1)
employs the B-norm. We also note that a TRS solution lies on the boundary in the
hard case, since we have either λ∗ > 0 (trivially a boundary solution), or A � 0 with
A having null vectors, so again a TRS solution is on the boundary.

Although mathematically the hard case represents only a set of TRS instances
of measure zero, it can happen for matrices with special structures, and numerically
there are “nearly hard cases,” in which g>y2 ≈ 0 and hence λ∗ ≈ µn. These can be
equally challenging. Indeed a number of studies such as [25, 32] have focused on the
hard case with B = I.

In our approach, the reason the hard case is difficult is that recalling (18), the
eigenvectors of M or M̃ for λ∗ do not give us the TRS solution. Indeed the linear
system (A + λ∗B)x = −g has infinitely many solutions. The challenge is, therefore,

TRS VIA GEP 279

to find the solution p∗ such that (A+ λ∗B)p∗ = −g and ‖p∗‖B = ∆. We manage to
do so by modifying an approach in [8] to adapt to a general positive definite B.

4.1. Solution for the hard case. We form a nonsingular linear system using
N (A+ λ∗B) such that we can obtain p∗ from its solution.

Theorem 4.3. Suppose the TRS problem (1) belongs to the “hard case” and
(λ∗, p∗) satisfies (3)–(5) and ||p∗||B = ∆ with λ∗ = µn. Let d = dim(N (A + λ∗B))
and V := [v1, . . . , vd] be a basis of N (A+λ∗B) that is B-orthogonal, i.e., V >BV = Id.
For an arbitrary α > 0, define

H :=

(
A+ λ∗B + α

d∑
i=1

Bviv
>
i B

)
.

Then H is positive definite. Moreover, q := −H−1g is the minimum-norm solution
to the linear system (A+ λ∗B)p = −g in the B-norm, that is,

(24) q = argminp{‖p‖B |(A+ λ∗B)p = −g}.

Furthermore, for any nonzero v ∈ N (A+ λ∗B) there exists a scalar η ∈ R such that
p∗ = q + ηv is a TRS solution.

Proof. First, we prove that H � 0. Let W be the matrix that simultaneously di-
agonalize A,B as in (9). Then W>(A+λ∗B)W = diag(λ∗−µ1, . . . , λ∗−µn−d, 0, . . . , 0)
is a diagonal matrix and W>BW = I.

We claim that defining G =
∑d
i=1Bvi(Bvi)

> = BV V >B, we have

W>GW =

[
On−d

Id

]
.

To see this, writing W = [W1 W2] we have (A+ λ∗B)W2 = (A+ λ∗B)V = On×d and
W>2 BW2 = V >BV = Id. Since V,W2 are of the same size, these two equalities imply
that V,W2 are both B-orthonormal matrices that span the same subspace, namely
the space spanned by the eigenvectors of A+ λB corresponding to the eigenvalue λ∗.
Hence there exists an orthogonal matrix Q ∈ Rd×d such that V = W2Q. Therefore,

W>(BV V >B)W = [W1 W2]>BW2Q(W2Q)>B[W1 W2]

=
(
[W1 W2]>BW2

)
W>2 B[W1 W2]

=

[
O(n−d)×d

Id

] [
Od×(n−d) Id

]
=

[
On−d

Id

]
,

where we have used the fact W>BW = [W1 W2]>B[W1 W2] = In. Therefore,

W>HW =

(
W>AW + λ∗In + α

d∑
i=1

W>Bviv
>
i BW

)
= diag(λ∗ − µ1, . . . , λ∗ − µn−d, α, . . . , α)

is positive definite, so by Sylvester’s law of inertia it follows that H is also positive
definite.

We next show that q := −H−1g is a solution to the singular linear system (A +
λ∗B)p = −g, which necessarily has infinitely many solutions. To see that (A+λ∗B)q =

280 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

−g, define Λ̃ = −diag(µ1, . . . , µn−d) (recall Λ in (9)) and note that −g = (A+ λ∗B)p
implies (for the remainder of the proof, I = In−d and O = Od)

−g = W−>
[
Λ̃+ λ∗I

O

]
W−1p,

and also that

(25) q := −H−1g = −W
[
Λ̃+ λ∗I

αI

]−1
W>g

from which we obtain

(A+ λ∗B)q = −W−>
[
Λ̃+ λ∗I

O

]
W−1W

[
Λ̃+ λ∗I

αI

]−1
W>g

= −W−>
[
I

O

]
W>g = W−>

[
I

O

]
W>W−>

[
Λ̃+ λ∗I

O

]
W−1p

= W−>
[
Λ̃+ λ∗I

O

]
W−1p = −g.

To prove that q = −H−1g is the minimum B-norm solution to (A+λ∗B)p = −g,
note that we can write a general solution to (A + λ∗B)p = −g as p = q + v where
v ∈ N (A+ λ∗B). We shall show that ‖q‖B ≤ ‖q + v‖B for any such v. We have

‖q + v‖2B = (q + v)>B(q + v) = q>Bq + 2v>Bq + v>Bv.

Since B is positive definite the third term is nonnegative, it suffices to show that
v>Bq = 0 for all v ∈ N (A+ λ∗B). To see this, using q = −H−1g = H−1(A+ λ∗B)q
we obtain Bq = BH−1(A+ λ∗B)q, and note that

BH−1(A+ λ∗B) = (A+ λ∗B)H−1B,

which we can also verify using the decomposition with respect to W (essentially
because diagonal matrices commute):

BH−1(A+ λ∗B)

= W−>W−1

(
W

[
Λ̃+ λ∗I

αId

]−1
W>

)(
W−>

[
Λ̃+ λ∗I

O

]
W−1

)
= W−>

[
I

O

]
W−1

=

(
W−>

[
Λ̃+ λ∗I

O

]
W−1

)(
W

[
Λ̃+ λ∗I

αId

]−1
W>

)
W−>W−1

= (A+ λ∗B)H−1B.

Therefore, we obtain for all v ∈ N (A+ λ∗B)

v>Bq = v>(BH−1(A+λ∗B)q) = v>((A+λ∗B)H−1Bq) = (v>(A+λ∗B))H−1Bq = 0,

as required. Note from (25) that ‖q‖2B =
∑n−1
j=1

(w>j g)
2

(µn−µj)2 , which we used in the proof

of Theorem 3.2.

TRS VIA GEP 281

It remains to establish the final statement. Since in the hard case the solution
is on the boundary with Lagrange multiplier λ∗ equal to µn, we are able to obtain a
vector q + ηv on the boundary by finding the scalar η by solving a scalar quadratic
equation ‖q + ηv‖2B = ∆2, to obtain a global solution to the TRS satisfying (2)–
(5).

In the last paragraph of the proof, it may appear that ‖q‖B > ∆ is possible, in
which case there is no η such that q+ηv is on the boundary. However, by Theorem 1.1,
there must be a boundary solution in the hard case. In other words, if even the
minimum-norm solution had norm ‖q‖B > ∆, then this implies the situation was not
the hard case, and the process in the previous section solves the TRS.

The proof above shows that in the hard case the TRS solution p∗ is generally not
unique; the goal is to find one solution, which we denote simply by p∗.

Theorem 4.3 shows that p∗ can be computed by finding the null vectors of A+λ∗B,
forming H, and solving the nonsingular linear system Hx+ g = 0. Finding η is then
an easy task of solving a scalar quadratic equation. Note that due to the low-rank
term α

∑d
i=1Bviv

>
i B, H can be dense even when A,B are sparse. Nonetheless, the

linear system Hx+g = 0 can be solved efficiently by the CG algorithm (employing an
appropriate preconditioner if available), which (as with any Krylov-type algorithm)
only requires a routine for computing matrix-vector multiplications with respect to
the coefficient matrix.

4.2. Detecting the hard case in our algorithm. As noted after Proposi-
tion 4.1, the hard case is indicated by y1 = 0, that is, the vector y1 that we usu-
ally obtain the solution from becomes zero; indeed, otherwise we obtain the solution
by (21).

This suggests that we can detect the hard case by looking at the first half elements
y1 of the computed eigenvector y =

[y1
y2

]
, which we take to have unit norm ‖y‖ = 1:

the hard case is when y1 = 0. In practice, due to roundoff errors the computed
vector ŷ1 (recall that quantities wearing a hat represent computed approximations)
has nonzero but small elements in the (near) hard case. To distinguish the hard and
generic cases, we set a threshold τ < 1 such that TRS with ‖y1‖ < τ is treated as
hard case. To set an appropriate value for τ , note that if the top part ŷ1 is small in
norm, denoting it by ε, we have

(26) M̃(λ̂∗)

[
ε
ŷ2

]
=

[
−B A+ λ̂∗B

A+ λ̂∗B − gg
>

∆2

] [
ε
ŷ2

]
.

For this to be numerically zero, by the first block row we have

(A+ λ̂∗B)ŷ2 = Bε.

Since the right-hand side is O(ε), it follows that (λ̂∗, ŷ2) can be regarded as an ap-
proximate eigenpair for (A,B).

To choose an appropriate threshold we analyze the accuracy of the computed ŷ1
as an approximation to p∗. Let the computed eigenvector ŷ =

[ŷ1
ŷ2

]
be normalized to

have unit norm. Assuming the matrix of eigenvectors is well conditioned, the accuracy

of ŷ is known to be O(residual
gap) [37, Chap. 5]. Here the residual is ‖M(λ̂∗)ŷ‖, which

is generally O(u) with a numerically stable algorithm,1 where u is the unit roundoff,

1To avoid unnecessary cluttering we assume ‖A‖, ‖B‖ are O(1). This causes no loss of generality
as we can scale the matrices without changing the TRS solution: A← c1A by taking g ← c1g, and
B ← c2B by taking ∆← c2∆.

282 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

and gap is the smallest distance between λ∗ and the rest of the eigenvalues of M(λ).
Moreover, the loss of accuracy in extracting a vector of norm ‖y1‖ as a part of a
unit-norm vector is a factor O(1

‖y1‖). Since the solution p∗ is obtained by normalizing

y1 as in (21), overall the accuracy in p∗ is estimated to be O(u
‖y1‖gap).

On the other hand, if we treat the problem as the hard case, recalling Theorem 4.3,
we need to compute the null vectors N (A+λ̂∗B). Numerically, these are the vectors v

for which ‖(A+λ̂∗B)v‖ is negligible. With the tolerance τ for detecting the hard case,

recalling (26), we expect the vectors we consider will have ‖(A+ λ̂∗B)v‖ = O(‖y1‖),
suggesting this entails an error of size O(‖y1‖).

We suggest choosing the threshold τ for ‖y1‖ based on which is likely to give the
more accurate solution, according to the above discussion: u

τgap = τ , that is,

(27) τ =

√
u

gap
.

In double precision arithmetic u ≈ 10−16, and we choose τ to be about 10−8
√

1/gap.
We can estimate the gap by computing two rightmost eigenvalues of M(λ) instead of
one. Alternatively and more efficiently, since a rough estimate for gap would suffice,
we can use the inverse power method for M(λ) = M0+λM1 by starting with a random
vector w that is M1-orthogonal to the eigenvector v corresponding to λ∗, and taking
a few iterations of power method with the matrix (M0 + λ∗M1)−1M1, executed by
solving the linear system (M0 + λ∗M1)wnew = M1w for wnew. Here we solve the
linear system only crudely using an iterative solver such as MINRES [28].

Below is the process to deal with the hard case TRS in pseudocode.

Algorithm 1 Algorithm for hard-case TRS.

1: Compute the eigenvectors of (A,B) corresponding to λ∗ (i.e., the null vectors of
A+ λ∗B).

2: Solve Hq + g = 0 for q by the CG method.
3: Take an eigenvector v ∈ N (A+ λ∗B) computed above, and find η ∈ R such that
‖q + ηv‖B = ∆ by a quadratic equation.

4: Return q + ηv as a candidate for the global TRS solution.

5. Pseudocode. We summarize our TRS algorithm in pseudocode (Algorithm 2).
The core part of Algorithm 2 is (28). We note that some steps can be skipped if addi-
tional information is available. For example, we can conclude that p0 is the (unique)
optimal TRS solution if (i) it is feasible ‖p0‖B ≤ ∆, and (ii) A � 0. Therefore, when
the positive definiteness of A is known or easily verifiable, if ‖p0‖B ≤ ∆ after step 1
in Algorithm 2, then we can dismiss the remaining steps in Algorithm 2 and take p0
as the TRS solution.

Note that the CG algorithm is originally designed for positive definite linear sys-
tems, and if CG does not converge, then this implies that A is numerically indefinite.
However, in practice CG often converges even when A is indefinite [27], so we cannot
conclude that A is positive definite just because the linear system Ap0 = −g was
solved by CG.

Another situation worth mentioning is when A is known (or easily verifiable) to
be indefinite with one or more negative eigenvalues. In this case a TRS solution must
lie on the boundary, and so there is no point in executing step 1; we directly proceed
to step 2.

TRS VIA GEP 283

Algorithm 2 Solve the TRS (1).

1: (Consider the case λ∗ = 0.) Solve Ap0 = −g by the CG algorithm, and keep p0 if
it satisfies ‖p0‖B < ∆.

2: Compute the rightmost eigenvalue λ∗ of M̃(λ) and an eigenvector
[y1
y2

]
such that

(28)

[−B A

A − gg
>

∆2

] [
y1
y2

]
= −λ∗

[
0 B
B 0

] [
y1
y2

]
.

3: Estimate the gap between λ∗ and the other eigenvalues via a power method. If

‖y1‖ ≤
√

u
gap, then treat as hard case: run Algorithm 1 to obtain p1. Otherwise,

obtain p1 by p1 := −sign(g>y2)∆ y1
‖y1‖B .

4: The solution p∗ is either p1 or p0 (if it exists), whichever gives the smallest objec-
tive value.

6. Comparison with existing methods. Here we compare our Algorithm 2
with previous methods and argue that ours has attractive properties in terms of
efficiency and simplicity. Moreover, numerical experiments illustrate the excellent
accuracy as we see in section 7.

6.1. Efficiency. The computational cost of our algorithm is O(n3) flops for
dense A,B. When A,B are large and sparse, it is essentially the cost of an Arnoldi-
type method for computing one rightmost eigenpair, which is typically in the order of
a constant times the cost of a matrix-vector product, or a shifted-and-inverted linear
system (M0 + σM1)x = b for some σ ∈ C; the cost also depends on the separation
of eigenvalues etc. This is in the same ballpark as the cost of the existing algorithms
[13, 25, 35] when B = I, both in the dense and large-sparse cases.

Let us compare the cost in more detail. Recall that most conventional algorithms
for an accurate TRS solution involve n × n linear systems or eigenvalue problems
iteratively, whereas ours solves a double-sized 2n×2n eigenproblem once. The advan-
tage of a noniterative approach becomes significant especially when the eigenproblem
scales mildly with n. For example, in the dense case where eigensolvers (and linear
systems) require O(n3) cost, our approach is roughly comparable to a conventional
algorithm that iterates eight times. If the eigensolver needs O(np) cost with p < 3,
then this number reduces to 2p.

We note that (when B = I) it is possibly less than twice as expensive to solve
the 2n × 2n eigenvalue problem M̃ rather than the size-(n + 1) eigenproblem with

respect to the matrix N(α) =
[
α g>

g A

]
, which is used in [35, 32, 33]. This is because

the dominant cost in the Arnoldi iteration is in matrix-vector multiplication, and
multiplying the matrix (22) to a vector

[
x1
x2

]
can be done by computing A[x1 x2] and

a vector-vector multiplication g>x1. Now, computing A[x1, x2] is usually faster than
two independent matrix-vector multiplications Ax1, Ax2 due to the use of a higher
level BLAS routine [12].

6.2. Ease of implementation. As mentioned before, the main feature of our
approach is that the TRS can be solved essentially by one generalized eigenvalue
problem.

Besides the aesthetic advantage of directly giving a solution without iterations,
another advantage of our approach is its ease of implementation. For example, in

284 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

MATLAB we can execute (28), the main part of Algorithm 2, in just four lines (here
M̃(λ) = M0 + λM1):

M0 = [-B A;A -g*g’/Delta^2];

M1 = [zeros(n) B;B zeros(n)];

lam = max(eig(M0,-M1));

p = -(A+lam*B)\g.

This is strikingly simple when compared with those of the existing algorithms, such
as the codes of [9, 14, 15, 33]. When A,B are large-scale and sparse, it is advised to
replace eig with eigs and M̃ with M . Specifically, in the large-scale case, after the
second line the code should be

[v,lam] = eigs(@(x)M0x(x),2*n,-M1,1,’lr’);

p = v(n+1:end);

p = p/sqrt(p’*B*p)*Delta.

The last line is a normalization to force ‖p‖B = ∆, because the computed eigenvector
is normalized so that ‖v‖2 = 1. Here M0x(x) is a function handle that left-multiplies
M0 to an input vector x. This saves memory over storing the matrix M0 because this
way we essentially need only store the matrices A and B, along with the vectors g, v.
This way, despite their doubled size, storing M,M̃ requires no more memory than
A,B, and g.

6.3. TRS as a subproblem. We argue that Algorithm 2 is the first algorithm
to solve the TRS accurately and is suited to the large-scale sparse case with B 6= I
without requiring a change of variables or outer iterations. However, its performance
for efficiently solving the overall nonlinear optimization problem using TRS as a sub-
problem is not easily predictable, in which solving the TRS exactly is not necessary,
and it suffices if the TRS solution results in sufficient reduction in the original non-
linear function f .

To gain an idea of the performance in such cases, we present experiments where
we obtain approximate TRS solutions by stopping the Arnoldi iteration early when
computing the eigenpair (28).

7. Numerical experiments. We now turn to experiments to examine the per-
formance of the proposed methods for a variety of TRS instances. All experiments
were carried out in MATLAB 2013A on a Blade server machine with Xeon CPU and
64 GB memory.

In the figures below, Algorithm 2 is shown as GEP (standing for generalized
eigenvalue problem). We compare GEP with three other codes that are publically
available, implementing existing algorithms: (i) the code by Fortin–Wolkowicz [9]
which is based on the algorithm by Rendl and Wolkowicz [30] (shown as FRW),
(ii) Rojas, Santos, and Sorensen [33], based on [35] (shown as RSS), and (iii) the
galahad gltr in the Galahad library [14] (shown as GLTR), based on the algorithm
by Gould et al. [13]; this code is written in Fortran, and here we used its MATLAB
interface. We used the default parameters for FRW and RSS, and for GLTR, we
used the options extra vectors=100 and stop relative=1e-15 (suggested by Nick
Gould, chosen to obtain high-accuracy solutions).

We examine the performance in the following cases: (a) B = I and A is sparse,
(b) B = I and A is dense, (c) B 6= I and A,B are sparse, and (d) the hard case with
B = I.

In each set of experiments, we ran the codes 20 times and reported the average
runtime and accuracy. To measure the accuracy, we have computed the relative

TRS VIA GEP 285

objective function difference as follows:

(29)
f(p̂∗)− f(p̂best)

|f(p̂best)|
.

Here p̂∗ denotes the computed solution of each method and p̂best is the solution with
the smallest objective value among the four algorithms. The reason the accuracy
measure is usually positive in the plots below (exceptions include Figure 1 (right) for
GLTR) is that the algorithm that achieves p̂best varies from problem to problem, and
we report the average of 20 runs. Throughout, unless otherwise specified, we take2

∆ = 1 and the vector g is randomly generated by randn(n,1). To ensure the com-
puted solutions are always feasible, after each algorithm we applied the normalization
p̂ := ∆p̂/‖p̂‖B if the computed p̂ violated the constraint ‖p̂‖B ≤ ∆.

When B = I and A is sparse. We first set B = I and let A be large-sparse
matrices, varying the matrix size n from 103 (moderate) to 107 (large).

In Figure 1 we show the results with A = L − 5I, where L is the discrete two-
dimensional (2D) Laplacian (Figure 1); this follows the test matrices in [33]. For
n > 106 we ran only GEP and GLTR, which complete the computation in a reasonable
amount of time.

10
3

10
4

10
5

10
6

10
7

matrix size

10
-4

10
-2

10
0

10
2

10
4

ti
m

e
(s

)

FRW

RSS

GEP

GLTR

10
3

10
4

10
5

10
6

10
7

matrix size

10
-15

10
-10

10
-5

10
0

a
c
c
u

ra
c
y

FRW

RSS

GEP

GLTR

Fig. 1. Runtime (left) and accuracy (right) for A = L− 5I and B = I.

We also experiment with a random symmetric sparse matrix (Figure 2), generated
by

(30) A = sprandsym(n, density),

where we took density=1e-2.
The left plots of Figures 1 and 2 show the runtime in seconds. We see that while

GLTR was the fastest in these examples—our algorithm was notably faster than FRW
and RSS, the codes natively programmed in MATLAB. Figure 1 indicates that GEP
scales like O(n) for this problem. Recalling the discussion in section 6.1, this is
favorable for our noniterative algorithm, because the iterative algorithms often need
to solve more than ten eigenproblems of half the size.

The right plots of Figures 1 and 2, which show the difference in the objective
values, illustrate that our algorithm GEP obtained solutions within about 10−15 of

2The choice of ∆ is usually made adaptively during the overall trust-region method [4, sect.
6.1]. It is worth noting that the volume of the unit ball in Rn shrinks factorially with n [18], so
a geometrically appropriate choice may be far from ∆ = 1. Our experiments suggest that the
performance of GEP depends only mildly on the value of ∆.

286 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

10
2

10
3

10
4

10
5

matrix size

10
-4

10
-2

10
0

10
2

ti
m

e
(s

)

FRW

RSS

GEP

GLTR

10
2

10
3

10
4

10
5

matrix size

10
-15

10
-10

10
-5

10
0

a
c
c
u

ra
c
y

FRW

RSS

GEP

GLTR

Fig. 2. Runtime (left) and accuracy (right) for A = sprandsym(n, 1e− 2) and B = I.

the optimal for every problem, which are accurate enough to be regarded as exact
solutions in double precision arithmetic. These results suggest that with the eigen-
solvers available today, when A,B are sparse, our algorithm is applicable and effective
for very large problems.

When B = I and A is dense. We next examine the dense case. We generate
A by forming n random real numbers µi via randn(n,1), then generating a random
orthogonal matrix Q, formed by orth(randn(n)) and setting A = Q>diag(µi)Q.
Clearly, we are limited to much smaller matrix size n than in the previous sparse
case; here we take n ≤ 104.

The results are shown in Figure 3. The accuracy behaved much the same as in the
sparse case. For the speed, the difference is more benign than in the sparse case. We
can explain this qualitatively as follows: in the dense case all the algorithms require
O(n3) operations, and, recalling the discussion in section 6, our algorithm is expected
to be fast especially when the generalized eigenproblem can be solved efficiently. In
the sparse case its cost is often much less than O(n3) as we saw above, and this is a
favorable situation for our algorithm. In the dense case, for which all algorithms are
expected to scale like O(n3), our algorithm still has efficiency comparable with other
approaches. GLTR appears to scale slightly worse than the other algorithms here.
Another alternative for dense problems is GALAHAD’s galahad trs, which imple-
ments the algorithm in [15], although it did not perform better in the experiments
here.

10
1

10
2

10
3

10
4

matrix size

10
-4

10
-2

10
0

10
2

ti
m

e
(s

)

FRW

RSS

GEP

GLTR

10
1

10
2

10
3

10
4

matrix size

10
-15

10
-10

10
-5

10
0

a
c
c
u

ra
c
y

FRW

RSS

GEP

GLTR

Fig. 3. Dense A, B = I. Runtime (left) and accuracy (right).

TRS VIA GEP 287

When B � 0 and A is sparse. We now examine problems with B 6= I. We let A
be sparse as in and B be a tridiagonal matrix, defined as A = sprandsym(n,0.01)

as in (30) and B = tridiag(1,3,1). g is a random vector as before.
Since FRW and RSS are not directly applicable when B 6= I, to invoke these al-

gorithms we first compute the Cholesky factorization B = LL>, then form L−1AL−>

and apply the codes to A← L−1AL−>, g ← L−1g, and B ← I. RSS is a matrix-free
algorithm that allows the input for the matrix A to be a routine for matrix-vector
multiplication, so we can use RSS without forming the (dense) matrix L−1AL−> by
solving a linear system with L,L> for each matrix-vector multiply, thus RSS allows
us to work only with sparse matrices; in the above example, L here has bandwidth
2. The code FRW does not allow such input, which makes the code too costly in
memory and hence inapplicable for large n. GEP and GLTR do not require modified
treatment when B 6= I; they handle the B 6= I case exactly the same way as when
B = I.

Figure 4 shows the results. As before, our algorithm outperforms FRW and
RSS. GLTR is the most efficient here, although the difference shrinks with n as GEP
appears to scale better.

10
2

10
3

10
4

10
5

matrix size

10
-4

10
-2

10
0

10
2

ti
m

e
(s

)

FRW

RSS

GEP

GLTR

10
2

10
3

10
4

10
5

matrix size

10
-15

10
-10

10
-5

10
0

a
c
c
u

ra
c
y

FRW

RSS

GEP

GLTR

Fig. 4. Sparse A,B, B 6= I. Runtime (left) and accuracy (right) for A = sprandsym, B
tridiagonal.

Hard case. We now turn to the hard case. The standard process is then insuffi-
cient, and algorithms usually employ a remedy for the hard case, such as Algorithm 1
for GEP. An exception is RSS, in which the hard case is treated within the main
iteration of the algorithm.

We let B = I and form a tridiagonal A, with 2 on the diagonal and random N(0, 1)
elements on the off-diagonals; the Hessian A is tridiagonal if the objective function in
the nonlinear optimization problem depends only on adjacent variables xi−1, xi, xi+1.
To generate a “hard case,” we first set g to be a random vector and calculate the
largest eigenvalue λ∗ of the pencil A + λB with a corresponding eigenvector v. We
then update g as g ← g − (v>g/||v||2)v. To enforce the hard case we set ∆ to be
large: ∆ = 103. Indeed we verified that λ∗ = µn in all the examples thus generated
indicating the hard case.

We set the convergence criteria of the CG method as follows: the relative residual
is less than 10−12, or the maximum allowed number of iterations 3000 is reached.
Since galahad gltr appeared to return an incorrect output in the hard case, here we
do not present its accuracy. The results are shown in Figure 5.

Observe that, especially in the hard case, our algorithm is fast and reliable, giving

288 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

10
3

10
4

10
5

10
6

matrix size

10
-2

10
0

10
2

10
4

ti
m

e
(s

)

FRW

RSS

GEP

GLTR

10
3

10
4

10
5

10
6

matrix size

10
-15

10
-10

10
-5

10
0

a
c
c
u

ra
c
y

FRW

RSS

GEP

Fig. 5. Hard case. Runtime (left) and accuracy (right), B = I and A sparse.

Table 1
Error in computed objective value.

FRW RSS GEP
n = 100 1.50e-12 9.37e-14 1.44e-15
n = 1000 1.49e-12 8.90e-14 −6.22e-15
n = 10000 4.39e-14 8.32e-14 3.87e-14

the most accurate solutions. We note that while GALAHAD’s GLTR underperformed
in this example, the latest prereleased version 3.0 has addressed the inefficiency and
accuracy issue for the hard case.

Problems whose exact solution is known. We can generate a TRS problem in the
hard case with known exact solutions as follows: first, set

A = diag(−1, 2, 3, . . . , n), g = (0,−3α∆, 0, . . . , 0)>,

B = I, ∆ = 1, and α = 10−2. In this case, the optimal value of TRS (1) is −(1 +
3α2)∆2/2. We then generate an orthogonal matrix Q by the MATLAB command
qr(rand(n)) and update A, g as A ← QAQ>, g ← Qg, which does not change the
optimal objective value.

We measured the difference between the computed optimal value of each method
and the exact optimal value. Note that we sometimes obtained objective value slightly
smaller than the exact optimal value; this is caused by roundoff error (recall that we
impose that the obtained solution is feasible to O(u)). The result is shown in Table
1, which confirms that our algorithm indeed computes solutions with high accuracy,
and the previous accuracy plots give reliable estimates for the errors.

Approximate solutions. Recalling the discussion in section 6.3, here we consider
using our approach to efficiently obtain an approximate TRS solution by solving the
generalized eigenvalue problem (28) approximately instead of to high accuracy O(u).
A natural strategy would be to terminate the iteration for computing the eigenpair
before convergence to full precision is attained.

To illustrate this idea, we formed an n = 1000 example and took B = I and let
A be a random matrix defined by A=randn(n);A=A’+A, and we apply k steps of the

Arnoldi process [1, Chap. 7] to −M−11 M0 =
[−A gg>

∆2

B −A

]
and approximate the eigenvec-

tor in (28) by the Ritz vector (e.g., [1, Chap. 3]) corresponding to the rightmost Ritz
value, from which we obtain approximate solutions xk for each k.

Figure 6 shows the accuracy of the resulting approximate solutions pk as the

TRS VIA GEP 289

20 40 60 80 100

Krylov dimension

10
-15

10
-10

10
-5

10
0

6 (pk, p∗)
||M0xk − λM1xk||
f(pk)− f(p∗)

Fig. 6. Accuracy in solution ∠(pk, p∗) and objective value f(pk) − f(p∗) as Krylov subspace
dimension k varies. Also shown is the residual ‖M0x− λM1x‖2 of the approximate eigenpair.

dimension of the Arnoldi subspace k varies. Here we quantify the accuracy from three
aspects: denoting by p∗ the solution (obtained by Algorithm 2) the angular error

∠(pk, p∗) = arccos
|p>k p∗|
‖pk‖‖p∗‖ , the distance from the optimal objective value f(pk) −

f(p∗), and the eigenpair residual ‖M0x− λM1x‖2, which measures the quality of the
approximate eigenpair.

Observe in Figure 6 that the computed TRS solution pk improves its accuracy
as the quality of the Ritz vector improves. Since Ritz vectors are known to typically
converge geometrically, which we can see in the figure, this suggests that our approach
is also attractive for computing an approximate TRS solution.

Summary of experiments. The results of our experiments can be summarized
as follows.

• Algorithm 2, GEP, based on one generalized eigenproblem is consistently
reliable and its accuracy is often among the highest, including the hard case.

• Algorithm 2 has speed comparable to the state-of-the-art methods, largely
independent of the problem: dense/sparse and/or B 6= I.

While GLTR was often the most efficient in the nonhard case, our algorithm is the
simplest to implement (largely due to the sophisticated but black-box eigensolvers
available via eig and eigs), robust and reliable without being much slower, tends to
scale well as n grows and outperforms existing MATLAB implementations.

8. Discussion. As we have seen, the real eigenvalues of M(λ) correspond to the
KKT points for the TRS, and the largest eigenvalue provides a solution that minimizes
the objective function g>p+ 1

2p
>Ap. In fact, more can be said: as shown by Forsythe

and Golub [7], the objective function value is an increasing function of λ, so we can
also maximize the objective function by finding the smallest real eigenvalue of M(λ).
Further analysis of the KKT points is given in [21]. The fact that we can both
maximize and minimize the objective function is perhaps unsurprising as we impose
no positive definiteness assumption on A, so the objective function is nonconvex and
there is no fundamental difference between minimizing and maximizing it.

Future directions include performance benchmarking on parallel systems in the
context of solving the TRS approximately in the trust-region method for nonlinear
optimization problems, comparing in particular with [13, 36]. Also worth considering
is extending the eigenvalue-based approach to solve other trust-region type problems

290 S. ADACHI, S. IWATA, Y. NAKATSUKASA, AND A. TAKEDA

[3, 29], and dealing with a general quadratically constrained quadratic programming
(QCQP) with one constraint. We note that an eigenvalue-based algorithm for QCQP
with two constraints is developed in [34], which also mentions in its appendix an
algorithm for one constraint. However, that algorithm involves the computation of all
the eigenvalues, and thus requires O(n3) flops in all cases. It remains open to develop
a more efficient algorithm that exploits structure such as sparsity.

Acknowledgments. We are grateful to Nick Gould for providing comments on
the manuscript and project, and helping us with the Galahad library. We thank the
referees for their useful comments and suggestions. We thank Bill Hager and Henry
Wolkowicz for discussions and testing our codes.

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000,
https://doi.org/10.1137/1.9780898719581.

[2] S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, 2004.

[3] S. Burer and K. M. Anstreicher, Second-order-cone constraints for extended trust-region
subproblems, SIAM J. Optim., 23 (2013), pp. 432–451, https://doi.org/10.1137/110826862.

[4] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, Volume 1. SIAM,
Philadelphia, 2000, https://doi.org/10.1137/1.9780898719857.

[5] J. B. Erway and P. E. Gill, A subspace minimization method for the trust-region step, SIAM
J. Optim., 20 (2009), pp. 1439–1461, https://doi.org/10.1137/08072440X.

[6] J. B. Erway, P. E. Gill, and J. D. Griffin, Iterative methods for finding a trust-region step,
SIAM J. Optim., 20 (2009), pp. 1110–1131, https://doi.org/10.1137/070708494.

[7] G. E. Forsythe and G. H. Golub, On the stationary values of a second-degree polynomial
on the unit sphere, J. Soc. Indust. Appl. Math., 13 (1965), pp. 1050–1068, https://doi.org/
10.1137/0113073.

[8] C. Fortin and H. Wolkowicz, The trust region subproblem and semidefinite pro-
gramming, Optim. Methods Softw., 19 (2004), pp. 41–67, https://doi.org/10.1080/
10556780410001647186.

[9] C. Fortin and H. Wolkowicz, Trust region subroutine algorithm: Algorithm and Documen-
tation, 2010, http://www.math.uwaterloo.ca/∼hwolkowi/henry/software/trustreg.d.

[10] W. Gander, G. H. Golub, and U. von Matt, A constrained eigenvalue problem, Linear
Algebra Appl., 114 (1989), pp. 815–839, https://doi.org/10.1016/0024-3795(89)90494-1.

[11] D. M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. and Stat. Comput., 2
(1981), pp. 186–197, https://doi.org/10.1137/0902016.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 2013.

[13] N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint, Solving the trust-region subproblem
using the Lanczos method, SIAM J. Optim., 9 (1999), pp. 504–525, https://doi.org/10.
1137/S1052623497322735.

[14] N. I. M. Gould, D. Orban, and P. L. Toint, GALAHAD, a library of thread-safe fortran 90
packages for large-scale nonlinear optimization, ACM Trans. Math. Software, 29 (2003),
pp. 353–372, https://doi.org/10.1145/962437.962438.

[15] N. I. M. Gould, D. P. Robinson, and H. S. Thorne, On solving trust-region and other
regularised subproblems in optimization, Math. Program. Comput., 2 (2010), pp. 21–57.

[16] W. W. Hager, Minimizing a quadratic over a sphere, SIAM J. Optim., 12 (2001), pp. 188–208,
https://doi.org/10.1137/S1052623499356071.

[17] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008,
https://doi.org/10.1137/1.9780898717778.

[18] G. Huber, Gamma function derivation of n-sphere volumes, Amer. Math. Monthly, 89 (1982),
pp. 301–302.

[19] S. Iwata, Y. Nakatsukasa, and A. Takeda, Global optimization methods for extended Fisher
discriminant analysis, in Proceedings of the Seventh AISTATS, JMLR W&CP 33, 2014,
pp. 411–419.

https://doi.org/10.1137/1.9780898719581
https://doi.org/10.1137/110826862
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/08072440X
https://doi.org/10.1137/070708494
https://doi.org/10.1137/0113073
https://doi.org/10.1137/0113073
https://doi.org/10.1080/10556780410001647186
https://doi.org/10.1080/10556780410001647186
http://www.math.uwaterloo.ca/~hwolkowi/henry/software/trustreg.d
https://doi.org/10.1016/0024-3795(89)90494-1
https://doi.org/10.1137/0902016
https://doi.org/10.1137/S1052623497322735
https://doi.org/10.1137/S1052623497322735
https://doi.org/10.1145/962437.962438
https://doi.org/10.1137/S1052623499356071
https://doi.org/10.1137/1.9780898717778

TRS VIA GEP 291

[20] R. Lehoucq, D. C. Sorensen, and C. Yang, Arpack User’s Guide: Solution of Large-Scale
Eigenvalue Problems With Implicitly Restorted Arnoldi Methods, Vol. 6, SIAM, Philadel-
phia, 1998, https://doi.org/10.1137/1.9780898719628.

[21] S. Lucidi, L. Palagi, and M. Roma, On some properties of quadratic programs with a convex
quadratic constraint, SIAM J. Optim., 8 (1998), pp. 105–122, https://doi.org/10.1137/
S1052623494278049.

[22] J. M. Mart́ınez, Local minimizers of quadratic functions on Euclidean balls and spheres, SIAM
J. Optim., 4 (1994), pp. 159–176, https://doi.org/10.1137/0804009.

[23] J. J. Moré, Recent developments in algorithms and software for trust region methods, Math-
ematical Programming: the State of the Art, Springer, Berlin, 1983, pp. 258–287.

[24] J. J. Moré, Generalizations of the trust region problem, Optimization Methods and Software,
2 (1993), pp. 189–209, https://doi.org/10.1080/10556789308805542.

[25] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. and Stat.
Comput., 4 (1983), pp. 553–572, https://doi.org/10.1137/0904038.

[26] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer-Verlag, New York,
1999.

[27] C. C. Paige, B. N. Parlett, and H. A. Van der Vorst, Approximate solutions and eigenvalue
bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115–133, https:
//doi.org/10.1002/nla.1680020205.

[28] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629, https://doi.org/10.1137/0712047.

[29] T. K. Pong and H. Wolkowicz, The generalized trust region subproblem, Comput. Optim.
Appl., 58 (2014), pp. 273–322, https://doi.org/10.1007/s10589-013-9635-7.

[30] F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with
applications to large scale minimization, Math. Programming, 77 (1997), pp. 273–299,
https://doi.org/10.1007/BF02614438.

[31] E. Rimon and S. P. Boyd, Obstacle collision detection using best ellipsoid fit, J. Intell. Robot.
Syst., 18 (1997), pp. 105–126, https://doi.org/10.1023/A:1007960531949.

[32] M. Rojas, S. A. Santos, and D. C. Sorensen, A new matrix-free algorithm for the large-
scale trust-region subproblem, SIAM J. Optim., 11 (2001), pp. 611–646, https://doi.org/
10.1137/S105262349928887X.

[33] M. Rojas, S. A. Santos, and D. C. Sorensen, Algorithm 873: LSTRS: MATLAB software
for large-scale trust-region subproblems and regularization, ACM Trans. Math. Softw., 34
(2008), 11, https://doi.org/10.1145/1326548.1326553.

[34] S. Sakaue, Y. Nakatsukasa, A. Takeda, and S. Iwata, Solving generalized CDT problems
via two-parameter eigenvalues, SIAM J. Optim., 26 (2016), pp. 1669–1694, https://doi.
org/10.1137/15100624X.

[35] D. C. Sorensen, Minimization of a large-scale quadratic function subject to a spher-
ical constraint, SIAM J. Optim., 7 (1997), pp. 141–161, https://doi.org/10.1137/
S1052623494274374.

[36] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637, https://doi.org/10.1137/0720042.

[37] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Computer Science and Scientific
Computing, Academic Press, Boston, 1990.

[38] P. D. Tao and L. T. H. An, A DC optimization algorithm for solving the trust-region subprob-
lem, SIAM J. Optim., 8 (1998), pp. 476–505, https://doi.org/10.1137/S1052623494274313.

[39] P. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, Sparse
Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, 1981, pp. 57–88.

https://doi.org/10.1137/1.9780898719628
https://doi.org/10.1137/S1052623494278049
https://doi.org/10.1137/S1052623494278049
https://doi.org/10.1137/0804009
https://doi.org/10.1080/10556789308805542
https://doi.org/10.1137/0904038
https://doi.org/10.1002/nla.1680020205
https://doi.org/10.1002/nla.1680020205
https://doi.org/10.1137/0712047
https://doi.org/10.1007/s10589-013-9635-7
https://doi.org/10.1007/BF02614438
https://doi.org/10.1023/A:1007960531949
https://doi.org/10.1137/S105262349928887X
https://doi.org/10.1137/S105262349928887X
https://doi.org/10.1145/1326548.1326553
https://doi.org/10.1137/15100624X
https://doi.org/10.1137/15100624X
https://doi.org/10.1137/S1052623494274374
https://doi.org/10.1137/S1052623494274374
https://doi.org/10.1137/0720042
https://doi.org/10.1137/S1052623494274313

	Introduction
	Interior and boundary solutions
	Interior solutions
	Boundary solutions

	Eigenvalue-based algorithm for boundary TRS solutions
	Key matrix pencils
	Finding *
	Obtaining p*
	Observations for a practical implementation
	The rightmost eigenvalue is real
	Which matrix pencil to use, M() or ()?
	Comparison with the algorithm by Gander, Golub, and von Matt

	Dealing with the ``hard case''
	Solution for the hard case
	Detecting the hard case in our algorithm

	Pseudocode
	Comparison with existing methods
	Efficiency
	Ease of implementation
	TRS as a subproblem

	Numerical experiments
	Discussion
	References

