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BISUBMODULAR FUNCTION MINIMIZATION∗

SATORU FUJISHIGE† AND SATORU IWATA‡

Abstract. This paper presents the first combinatorial polynomial algorithm for minimizing
bisubmodular functions, extending the scaling algorithm for submodular function minimization due
to Iwata, Fleischer, and Fujishige. Since the rank functions of delta-matroids are bisubmodular,
the scaling algorithm naturally leads to the first combinatorial polynomial algorithm for testing
membership in delta-matroid polyhedra.
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1. Introduction. Let V be a finite nonempty set of cardinality n and 3V denote
the set of ordered pairs of disjoint subsets of V . Two binary operations � and � on
3V are defined by

(X1, Y1) � (X2, Y2) = ((X1 ∪X2)\(Y1 ∪ Y2), (Y1 ∪ Y2)\(X1 ∪X2)),

(X1, Y1) � (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2).

A function f : 3V → R is called bisubmodular if it satisfies

f(X1, Y1) + f(X2, Y2) ≥ f((X1, Y1) � (X2, Y2)) + f((X1, Y1) � (X2, Y2))

for any (X1, Y1) and (X2, Y2) in 3V . This paper presents the first combinatorial
polynomial algorithm for minimizing bisubmodular functions.

Examples of bisubmodular functions include the rank functions of delta-matroids
introduced independently by Bouchet [3] and Chandrasekaran–Kabadi [6]. A delta-
matroid is a set system (V,F) with F being a nonempty family of subsets of V that
satisfies the following exchange property:

∀F1, F2 ∈ F ,∀v ∈ F1
F2,∃u ∈ F1
F2 : F1
{u, v} ∈ F ,

where 
 denotes the symmetric difference. A slightly restricted set system with an
additional condition ∅ ∈ F had been introduced by Dress–Havel [11]. A member of F
is called a feasible set of the delta-matroid. Note that the base and the independent-
set families of a matroid satisfy this exchange property. Thus, a delta-matroid is a
generalization of a matroid.

Chandrasekaran–Kabadi [6] showed that the rank function � : 3V → Z defined by

�(X,Y ) = max{|X ∩ F | − |Y ∩ F | | F ∈ F}
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is bisubmodular. The convex hull of the characteristic vectors of the feasible sets is
described by

P(�) = {x | x ∈ RV , ∀(X,Y ) ∈ 3V : x(X) − x(Y ) ≤ �(X,Y )},

which is called the delta-matroid polyhedron. This fact follows from the greedy algo-
rithm [3, 6] for optimizing a linear function over the feasible sets.

Given a vector x ∈ RV , one can test if x belongs to P(�) by minimizing a
bisubmodular function f(X,Y ) = �(X,Y ) − x(X) + x(Y ). Even for such a special
case of bisubmodular function minimization, no combinatorial algorithm was known
to run in polynomial time. This is in contrast with the matroid polyhedron, for which
Cunningham [7] devised a combinatorial strongly polynomial algorithm for testing
membership.

A simple example of a delta-matroid is a matching delta-matroid [4], whose fea-
sible sets are the perfectly matchable vertex subsets of an undirected graph. The
corresponding delta-matroid polyhedron is the matchable set polytope [2]. For this
special case, Cunningham–Green-Krótki [10] developed an augmenting path algorithm
for solving the separation problem in polynomial time with the aid of the scaling tech-
nique.

A bisubmodular function also generalizes a submodular (set) function. Let 2V

denote the family of all the subsets of V . A function g : 2V → R is called submodular
if it satisfies

g(Z1) + g(Z2) ≥ g(Z1 ∪ Z2) + g(Z1 ∩ Z2)

for any Z1, Z2 ⊆ V . For a submodular function g, we define a bisubmodular function
f : 3V → R by

f(X,Y ) = g(X) + g(V \Y ) − g(V ).

If (X,Y ) is a minimizer of f , then both X and V \Y are minimizers of g. Thus, bisub-
modular function minimization (BSFM) is a generalization of submodular function
minimization.

The first polynomial algorithm for submodular function minimization is given by
Grötschel–Lovász–Schrijver [16]. They also give the first strongly polynomial algo-
rithms in [17]. Their algorithms rely on the ellipsoid method, which is not efficient
in practice. Two combinatorial strongly polynomial algorithms have been devised
independently by Schrijver [23] and Iwata–Fleischer–Fujishige [18]. Both of these
new algorithms are based on the combinatorial pseudopolynomial algorithm given by
Cunningham [8]. The algorithm of Schrijver [23] directly achieves a strongly polyno-
mial bound, whereas Iwata–Fleischer–Fujishige [18] develop a scaling algorithm with
weakly polynomial time complexity and then convert it to a strongly polynomial one.

In the present paper, we extend the scaling algorithm of Iwata–Fleischer–Fujishige
[18] to solve the minimization problem for integer-valued bisubmodular functions.
The resulting algorithm runs in O(n5 logM) time, where M designates the maximum
value of f . This bound is weakly polynomial. A strongly polynomial version will be
presented in a forthcoming paper by McCormick–Fujishige [21].

As a generalization of the delta-matroid polyhedron, a bisubmodular polyhedron

P(f) = {x | x ∈ RV , ∀(X,Y ) ∈ 3V : x(X) − x(Y ) ≤ f(X,Y )}

is associated with a general bisubmodular function f : 3V → R, where we assume
f(∅, ∅) = 0. The linear optimization problem over the bisubmodular polyhedron can
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be solved by the greedy algorithm of Dunstan–Welsh [12]. Based on the validity of this
greedy algorithm, Qi [22] established a connection between bisubmodular functions
and their convex extensions. This generalizes a result of Lovász [19] on submodular
functions. Qi [22] also mentioned that the connection provides a polynomial algorithm
for bisubmodular function minimization using the ellipsoid method. In contrast, our
combinatorial algorithm directly deals with the separation problem for bisubmodular
polyhedra.

The concept of delta-matroid is extended to that of jump system by Bouchet–
Cunningham [5]. A jump system is a set of lattice points satisfying a certain axiom.
Examples include the set of degree sequences of a graph [9]. Lovász [20] investigated
the membership problem in jump systems and proved a min-max theorem for a fairly
wide class of jump systems. The lattice points contained in an integral bisubmodular
polyhedron form a jump system, called a convex jump system, and conversely the
convex hull of a jump system is an integral bisubmodular polyhedron. An example of
a convex jump system is the so-called b-matching degree sequence polyhedron [9]. A
very recent paper of Zhang [24] presented an augmenting path separation algorithm
for this polyhedron. The present paper provides a more general algorithmic approach
to the membership problem in convex jump systems.

2. Bisubmodular polyhedra. This section provides a preliminary on bisub-
modular polyhedra. See [14, section 3.5 (b)] for more detail and background.

For any vector y ∈ RV , we denote ‖y‖ =
∑

v∈V |y(v)|. Concerning the short-
est distance from a given vector x◦ to the bisubmodular polyhedron P(f), we have
the following min-max relation, which is essentially equivalent to an earlier result of
Cunningham–Green-Krótki [9].

Theorem 2.1 (Fujishige [15]). For any bisubmodular function f : 3V → R and
any vector x◦ ∈ RV ,

min{‖x− x◦‖ | x ∈ P(f)} = max{x◦(X) − x◦(Y ) − f(X,Y ) | (X,Y ) ∈ 3V }

holds. Moreover, if f and x◦ are integer valued, then there is an integral vector x that
attains the minimum in the left-hand side.

When x◦ = 0, the min-max relation characterizes the minimum value of f . Our
combinatorial algorithm is built on this characterization.

We now turn to the greedy algorithm for computing an extreme point of a bisub-
modular polyhedron. See also [1] for related structural results on extreme points of
bisubmodular polyhedra.

Let σ : V → {+,−} be a sign function. For any subset U ⊆ V , we denote by
U |σ the pair (X,Y ) ∈ 3V with X = {u | u ∈ U, σ(u) = +} and Y = {u | u ∈
U, σ(u) = −}. We also write f(U |σ) = f(X,Y ) for any function f : 3V → R, and
x(U |σ) = x(X) − x(Y ) for any vector x ∈ RV .

Let L = (v1, · · · , vn) be a linear ordering of V . For each j = 1, . . . , n, let L(vj) =
{v1, . . . , vj}. The greedy algorithm with respect to L and a sign function σ assigns
y(v) := σ(v){f(L(v)|σ) − f(L(v)\{v}|σ)} for each v ∈ V . Then the resulting vector
y ∈ RV is an extreme point of the bisubmodular polyhedron P(f).

Given a weight function w : V → R, construct a linear ordering L = (v1, . . . , vn)
and a sign function σ that satisfies |w(v1)| ≥ · · · ≥ |w(vn)| and w(v) = σ(v)|w(v)|
for each v ∈ V . Then the vector y generated by the greedy algorithm with respect
to L and σ maximizes the linear function

∑
v∈V w(v)y(v) over the bisubmodular

polyhedron P(f).
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3. Scaling algorithm. This section presents a scaling algorithm for minimizing
an integer-valued bisubmodular function f : 3V → Z, provided that an oracle for
evaluating the function value is available.

The scaling algorithm works with a positive parameter δ. The algorithm keeps a
vector x ∈ P(f) as a convex combination of extreme points of P(f) indexed by finite
set I. Namely, x =

∑
i∈I λiyi with λi > 0 for each i ∈ I and

∑
i∈I λi = 1. Each

extreme point yi is generated by the greedy algorithm with respect to Li and σi. It
also keeps a pair of functions ϕ : V × V → R and ψ : V × V → R. The function ϕ
is skew-symmetric, i.e., ϕ(u, v) + ϕ(v, u) = 0 for any u, v ∈ V , while ψ is symmetric,
i.e., ψ(u, v) = ψ(v, u) for any u, v ∈ V . These functions are called δ-feasible if they
satisfy −δ ≤ ϕ(u, v) ≤ δ and −δ ≤ ψ(u, v) ≤ δ for any u, v ∈ V . The boundaries ∂ϕ
and ∂ψ are defined by ∂ϕ(u) =

∑
v∈V ϕ(u, v) and ∂ψ(u) =

∑
v∈V ψ(u, v).

The algorithm starts with an extreme point x ∈ P(f) generated by the greedy
algorithm with respect to a linear ordering L and a sign function σ. The initial value
of δ is given by δ := ‖x‖/n2, and the initial values of ϕ and ψ are zero.

Each scaling phase starts by cutting the value of δ in half. Then it modifies ϕ
and ψ to make them δ-feasible. This can be done by setting each ϕ(u, v) and ψ(u, v)
to the closest values in the interval [−δ, δ].

The rest of the scaling phase aims at decreasing ‖z‖ for z = x + ∂ϕ + ∂ψ. It
uses three procedures: Augment, Double-Exchange, and Tail-Exchange. Procedure
Augment decreases ‖z‖ by δ, whereas Double-Exchange and Tail-Exchange modify x,
ϕ, ψ keeping z invariant. The scaling phase terminates when none of these procedures
are applicable. Then ‖z‖ is shown to be small enough to keep moderate the number
of applications of Augment in the next scaling phase. Furthermore, if δ < 1/3n2, then
the algorithm detects a pair (X,Y ) that minimizes f .

Given δ-feasible ϕ and ψ, the algorithm constructs an auxiliary directed graph
G(ϕ,ψ) as follows. Let V + and V − be two copies of V . For each v ∈ V , we denote
its copies by v+ ∈ V + and v− ∈ V −. The vertex set of G(ϕ,ψ) is V + ∪ V −. For
any subset U ⊆ V , define U+ = {u+ | u ∈ U} and U− = {u− | u ∈ U}. The arc set
A(ϕ,ψ) = A(ϕ) ∪A(ψ) of G(ϕ,ψ) is defined by

A(ϕ) = {(u+, v+) | u �= v, ϕ(u, v) ≤ 0} ∪ {(u−, v−) | u �= v, ϕ(u, v) ≥ 0},
A(ψ) = {(u+, v−) | ψ(u, v) ≤ 0} ∪ {(u−, v+) | ψ(u, v) ≥ 0}.

Note that, for any u, v ∈ V and any sign function η on V , the graph G(ϕ,ψ) has
a directed path from uη(u) to vη(v) if and only if G(ϕ,ψ) has a directed path from
v−η(v) to u−η(u).

Let S = {v | v ∈ V, z(v) ≤ −δ} and T = {v | v ∈ V, z(v) ≥ δ}. A simple directed
path in G(ϕ,ψ) from S+ ∪ T− to S− ∪ T+ is called a δ-augmenting path. If there
exists a δ-augmenting path P , the algorithm applies the following δ-augmentation to
ϕ and ψ.

Augment(δ, P, ϕ, ψ):
• For each (u+, v+) in P , ϕ(u, v) := ϕ(u, v) + δ/2 and ϕ(v, u) := ϕ(v, u)− δ/2.
• For each (u−, v−) in P , ϕ(u, v) := ϕ(u, v)− δ/2 and ϕ(v, u) := ϕ(v, u) + δ/2.
• For each (u+, v−) in P , ψ(u, v) := ψ(u, v) + δ/2 and ψ(v, u) := ψ(v, u) + δ/2.
• For each (u−, v+) in P , ψ(u, v) := ψ(u, v)− δ/2 and ψ(v, u) := ψ(v, u)− δ/2.

Note that a δ-augmentation does not change x, maintains δ-feasibility, and decreases
‖z‖ by δ.

After each δ-augmentation, the algorithm computes an expression of x as a convex
combination of affinely independent extreme points of P(f) chosen from among {yi |
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Double-Exchange(i, u, v);
β := f(Li(u)\{v}|σi) − f(Li(u)|σi) + σi(v)yi(v);
α := min{δ, λiβ};
If α < λiβ then

k ← a new index;
I := I ∪ {k};
λk := λi − α/β;
λi := α/β;
yk := yi;
Lk := Li;

Update Li by interchanging u and v;
yi := yi + β(σi(u)χu − σi(v)χv);
x := x + α(σi(u)χu − σi(v)χv);
If σi(u) = σi(v) then

ϕ(u, v) := ϕ(u, v) − σi(u)α;
ϕ(v, u) := ϕ(v, u) + σi(u)α;

Else
ψ(u, v) := ψ(u, v) − σi(u)α;
ψ(v, u) := ψ(v, u) − σi(u)α.

Fig. 3.1. Algorithmic description of Procedure Double-Exchange(i, u, v).

i ∈ I}. This can be done by a standard linear programming technique using Gaussian
elimination.

If there is no δ-augmenting path, let X+ ⊆ V + and Y − ⊆ V − be the sets of
vertices reachable by directed paths from S+ ∪ T−. Then we have S ⊆ X, T ⊆ Y ,
and X ∩ Y = ∅. For each i ∈ I, consider a pair of disjoint subsets Wi = {u | uσi(u) ∈
X+ ∪ Y −} and Ri = {u | uσi(u) ∈ X− ∪ Y +}. Note that Wi ∪Ri = X ∪ Y . We now
introduce two procedures: Double-Exchange and Tail-Exchange.

Procedure Double-Exchange(i, u, v) is applicable if u immediately succeeds v in Li

and either u ∈ Wi and v /∈ Wi or u /∈ Ri and v ∈ Ri hold. Such a triple (i, u, v) is
called active. The first step of the procedure is to compute

β := f(Li(u)\{v}|σi) − f(Li(u)|σi) + σi(v)yi(v).

Then it interchanges u and v in Li and updates yi as yi := yi +β(σi(u)χu−σi(v)χv).
The resulting yi is an extreme point generated by the new linear ordering Li and sign
function σi.

If λiβ ≤ δ, Double-Exchange(i, u, v) is called saturating. Otherwise, it is called
nonsaturating. In the nonsaturating case, the procedure adds to I a new index k
with yk, σk and Lk being the previous yi, σi and Li, and assigns λk := λi − δ/β
and λi := δ/β. In both cases, x moves to x := x + α(σi(u)χu − σi(v)χv) with
α = min{δ, λiβ}. In order to keep z invariant, the procedure finally modifies ϕ or ψ
appropriately. If σi(u) = σi(v), it updates ϕ(u, v) := ϕ(u, v) − σi(u)α and ϕ(v, u) :=
ϕ(v, u)+σi(u)α. On the other hand, if σi(u) �= σi(v), then ψ(u, v) := ψ(u, v)−σi(u)α
and ψ(v, u) := ψ(v, u) − σi(u)α. A formal description of Double-Exchange is given in
Figure 3.1.

Lemma 3.1. As a result of nonsaturating Double-Exchange(i, u, v), a new vertex
joins X ∪ Y or a δ-augmenting path appears in G(ϕ,ψ).
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Tail-Exchange(i, v);
σi(v) := −σi(v);
β := f(V |σi) − f(V \{v}|σi) − σi(v)yi(v);
α := min{δ, λiβ};
If α < λiβ then

k ← a new index;
I := I ∪ {k};
λk := λi − α/β;
λi := α/β;
yk := yi;
Lk := Li;

yi := yi + σi(v)βχv;
x := x + σi(v)αχv;
ψ(v, v) := ψ(v, v) − σi(v)α.

Fig. 3.2. Algorithmic description of Procedure Tail-Exchange(i, v).

Proof. The nonsaturating Double-Exchange(i, u, v) updates ϕ or ψ so that a new
arc (uσi(u), vσi(v)) should appear in G(ϕ,ψ). Recall that either u ∈ Wi and v /∈ Wi

or u /∈ Ri and v ∈ Ri holds. If u ∈ Wi and v /∈ Ri ∪ Wi, the new arc makes vσi(v)

reachable from S+ ∪ T−. If v ∈ Ri and u /∈ Wi ∪ Ri, the new arc makes uσi(u)

reachable to S− ∪ T+. Thus, in these cases, a new vertex v or u is added to X ∪ Y .
Finally, if u ∈ Wi and v ∈ Ri, the new arc yields a δ-augmenting path.

Procedure Tail-Exchange(i, v) is applicable if v is the last element in Li and v ∈ Ri.
Such a pair (i, v) is also called active. The first step of the procedure is to reverse the
sign σi(v). It then computes

β := f(V |σi) − f(V \{v}|σi) − σi(v)yi(v)

and updates yi := yi + σi(v)βχv. The resulting yi is an extreme point generated by
Li and the new σi.

If λiβ ≤ δ, Tail-Exchange(i, v) is called saturating. Otherwise, it is called nonsat-
urating. In the nonsaturating case, the procedure adds to I a new index k with yk, σk

and Lk being the previous yi, σi and Li, and assigns λk := λi − δ/β and λi := δ/β.
In both cases, x moves to x := x + σi(v)αχv with α = min{δ, λiβ}. In order to keep
z invariant, the procedure finally modifies ψ as ψ(v, v) := ψ(v, v) − σi(v)α. A formal
description of Tail-Exchange is given in Figure 3.2.

Lemma 3.2. As a result of nonsaturating Tail-Exchange(i, v), a δ-augmenting
path appears in G(ϕ,ψ).

Proof. Suppose the algorithm applies Tail-Exchange(i, v) with σi(v) = τ . Then
v−τ is reachable from S+ ∪ T− and vτ is reachable to S− ∪ T+ in G(ϕ,ψ). The
nonsaturating Tail-Exchange(i, v) changes σi(v) to −τ and updates ψ(v, v) so that a
new arc (v−τ , vτ ) appears in G(ϕ,ψ), which yields a δ-augmenting path from S+∪T−

to S− ∪ T+.
If there is no δ-augmenting path and neither Double-Exchange nor Tail-Exchange

is applicable, the algorithm terminates the scaling phase. Then it goes to the next
scaling phase unless δ < 1/3n2. If δ < 1/3n2, the algorithm terminates by returning
the current (X,Y ) as a minimizer of f .

A formal description of our scaling algorithm BSFM is now given in Figure 3.3.
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BSFM(f):
Initialization:

L ← a linear ordering on V ;
σ ← a sign function on V ;
x ← an extreme vector in P(f) generated by L and σ;
I := {�}, y� := x, λ� := 1, L� := L;
ϕ := 0, ψ := 0;
δ ← ‖x‖/n2;

While δ ≥ 1/3n2 do
δ := δ/2;
For (u, v) ∈ V × V do

Change ϕ(u, v) and ψ(u, v) to the closest values in the interval [−δ, δ];
S := {v | x(v) + ∂ϕ(v) + ∂ψ(v) ≤ −δ};
T := {v | x(v) + ∂ϕ(v) + ∂ψ(v) ≥ δ};
X+ ← the set of vertices in V + reachable from S+ ∪ T− in G(ϕ,ψ);
Y − ← the set of vertices in V − reachable from S+ ∪ T− in G(ϕ,ψ);
Q ← the set of active triples and active pairs;
While ∃δ-augmenting path or Q �= ∅ do

If ∃P : δ-augmenting path then
Augment(δ, P, ϕ, ψ);
Update S, T , X+, Y −, Q;
Express x as x =

∑
i∈I λiyi by possibly smaller affinely independent

subset I and positive coefficients λi > 0 for i ∈ I;
Else

While � ∃δ-augmenting path and Q �= ∅ do
Find an active (i, u, v) ∈ Q or active (i, v) ∈ Q;
Apply Double-Exchange(i, u, v) or Tail-Exchange(i, v);
Update X+, Y −, Q;

Return (X,Y );
End.

Fig. 3.3. A scaling algorithm for bisubmodular function minimization.

4. Validity and complexity. This section is devoted to the analysis of our
scaling algorithm. We first discuss the validity.

Lemma 4.1. At the end of each scaling phase, the current (X,Y ) ∈ 3V and
z = x + ∂ϕ + ∂ψ satisfy ‖z‖ ≤ 2nδ − f(X,Y ).

Proof. At the end of each scaling phase, we have yi(X) − yi(Y ) = f(X,Y )
for each i ∈ I. Hence, x satisfies x(X) − x(Y ) = f(X,Y ). By the definition of
(X,Y ), we have ϕ(u, v) > 0 for u ∈ X, v ∈ V \X and ϕ(u, v) < 0 for u ∈ Y ,
v ∈ V \Y . These inequalities imply ∂ϕ(X) =

∑
{ϕ(u, v) | u ∈ X, v ∈ V \X} > 0

and ∂ϕ(Y ) =
∑

{ϕ(u, v) | u ∈ Y, v ∈ V \Y } < 0. Similarly, we have ψ(u, v) > 0
for u ∈ X, v ∈ V \Y and ψ(u, v) < 0 for u ∈ Y , v ∈ V \X, which imply ∂ψ(X) =∑

{ψ(u, v) | u ∈ X, v ∈ V } > θ and ∂ψ(Y ) =
∑

{ψ(u, v) | u ∈ Y, v ∈ V } < θ, where
θ =

∑
{ψ(u, v) | u ∈ X, v ∈ Y }. Since S ⊆ X and T ⊆ Y , we have z(v) ≥ −δ for

v ∈ V \X and z(v) ≤ δ for v ∈ V \Y . Therefore, we have ‖z‖ ≤ −z(X)+z(Y )+2nδ ≤
−x(X) + x(Y ) + 2nδ = −f(X,Y ) + 2nδ.

Theorem 4.2. The algorithm obtains a minimizer of f at the end of the last
scaling phase.
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Proof. Note that δ < 1/3n2 at the end of the last scaling phase. For each v ∈ V ,
since |∂ϕ(v)| ≤ (n−1)δ and |∂ψ(v)| ≤ nδ, we have |x(v)| ≤ |z(v)|+|∂ϕ(v)|+|∂ψ(v)| ≤
|z(v)|+(2n−1)δ. Then it follows from Lemma 4.1 that ‖x‖ ≤ (2n2 +n)δ−f(X,Y ) <
1 − f(X,Y ). For any (X ′, Y ′) ∈ 3V , we have f(X ′, Y ′) ≥ x(X ′) − x(Y ′) ≥ −‖x‖ >
f(X,Y ) − 1. Hence (X,Y ) is a minimizer of the integer-valued function f .

We now give a running time bound of our algorithm.
Lemma 4.3. Each scaling phase performs O(n2) augmentations.
Proof. At the beginning of each scaling phase, the algorithm modifies ϕ and ψ to

make them δ-feasible (for the new δ). This changes ‖z‖ by at most 2n2δ. Therefore,
by Lemma 4.1, the pair (X,Y ) obtained at the end of the previous scaling phase must
satisfy ‖z‖ ≤ 2n2δ + 4nδ − f(X,Y ) after updating ϕ and ψ at the beginning of the
current scaling phase. On the other hand, at the end of the current scaling phase, we
have ‖z‖ ≥ −z(X)+ z(Y ) ≥ −x(X)+x(Y )− 2n2δ ≥ −f(X,Y )− 2n2δ. Thus, during
the scaling phase, ‖z‖ decreases by at most 4nδ + 4n2δ. Since each δ-augmentation
decreases ‖z‖ by δ, the number of δ-augmentations in the scaling phase is at most
4n2 + 4n, which is O(n2).

Lemma 4.4. The algorithm performs Procedure Double-Exchange O(n3) times
and Tail-Exchange O(n2) times between δ-augmentations.

Proof. In Double-Exchange, a vertex in Wi moves in Li ahead of some vertex
not in Wi and/or a vertex in Ri moves behind some vertex not in Ri. Procedure
Tail-Exchange changes a vertex of Ri into Wi. No vertex goes out of Wi. A vertex of
Ri can be switched to Wi by Tail-Exchange. However, it does not go out of Ri ∪Wi.
Thus, for each i ∈ I, after at most O(n2) applications of Double-Exchange and O(n)
applications of Tail-Exchange to i ∈ I, the subset Ri is empty and Wi = Li(w) holds for
some w ∈ V . At this point, neither Double-Exchange nor Tail-Exchange is applicable
to i ∈ I.

After each δ-augmentation, the algorithm updates the convex combination x =∑
i∈I λiyi so that |I| ≤ n+ 1. A new index is added to I as a result of nonsaturating

Double-Exchange(i, u, v) and Tail-Exchange(i, v). It follows from Lemmas 3.1 and 3.2
that this can happen at most n− 1 times before the algorithm finds a δ-augmenting
path or finishes the scaling phase. Hence, |I| is always O(n), and the algorithm
performs Double-Exchange O(n3) times and Tail-Exchange O(n2) times between δ-
augmentations.

Let M be the maximum value of f . Since f(∅, ∅) = 0, the maximum value M is
nonnegative.

Theorem 4.5. The scaling algorithm finds a minimizer of f in O(n5 logM)
time.

Proof. For the initial x ∈ P(f), let B = {v | x(v) > 0} and C = {v | x(v) < 0}.
Then we have ‖x‖ = x(B) − x(C) ≤ f(B,C) ≤ M . Hence the algorithm performs
O(logM) scaling phases. It follows from Lemmas 4.3 and 4.4 that each scaling phase
performs O(n5) function evaluations and arithmetic operations. Therefore the total
running time is O(n5 logM).

5. Conclusion. We have described a combinatorial polynomial algorithm for
minimizing integer-valued bisubmodular functions. If we are given a positive lower
bound ε for the difference between the minimum and the second minimum value of f ,
a variant of the present algorithm works for any real-valued bisubmodular function f .
The only required modification is to change the stopping rule δ < 1/3n2 to δ < ε/3n2.
The running time is O(n5 log(M/ε)). Thus we obtain a polynomial algorithm for
testing membership in delta-matroid polyhedra.
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One can make this algorithm strongly polynomial with the aid of the generic
preprocessing technique of Frank–Tardos [13] that uses the simultaneous Diophantine
approximation. However, a more natural strongly polynomial algorithm is desirable.
Subsequent to this paper, McCormick and Fujishige [21] have devised such an algo-
rithm for general bisubmodular function minimization.
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