
A FASTER SCALING ALGORITHM FOR MINIMIZING
SUBMODULAR FUNCTIONS∗

SATORU IWATA†

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 4, pp. 833–840

Abstract. Combinatorial strongly polynomial algorithms for minimizing submodular functions
have been developed by Iwata, Fleischer, and Fujishige (IFF) and by Schrijver. The IFF algorithm
employs a scaling scheme for submodular functions, whereas Schrijver’s algorithm achieves strongly
polynomial bound with the aid of distance labeling. Subsequently, Fleischer and Iwata have described
a push/relabel version of Schrijver’s algorithm to improve its time complexity. This paper combines
the scaling scheme with the push/relabel framework to yield a faster combinatorial algorithm for
submodular function minimization. The resulting algorithm improves over the previously best known
bound by essentially a linear factor in the size of the underlying ground set.

Key words. submodular function, discrete optimization, algorithm

AMS subject classification. 90C27

DOI. 10.1137/S0097539701397813

1. Introduction. Let V be a finite nonempty set of cardinality n. A set function
f on V is submodular if it satisfies

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) ∀X,Y ⊆ V.

Submodular functions are discrete analogues of convex functions [14]. Examples of
submodular functions include cut capacity functions, matroid rank functions, and
entropy functions.

The first polynomial-time algorithm for submodular function minimization is due
to Grötschel, Lovász, and Schrijver [9]. A strongly polynomial algorithm has also
been described by Grötschel, Lovász, and Schrijver [10]. These algorithms rely on the
ellipsoid method, which is not efficient in practice.

Recently, combinatorial strongly polynomial algorithms have been developed by
Iwata, Fleischer, and Fujishige (IFF) [13] and by Schrijver [16]. Both of these algo-
rithms build on works of Cunningham [2, 3]. The IFF algorithm employs a scaling
scheme developed in capacity scaling algorithms for the submodular flow problem
[7, 11]. In contrast, Schrijver [16] directly achieves a strongly polynomial bound by
introducing a novel subroutine in the framework of lexicographic augmentation. Sub-
sequently, Fleischer and Iwata [5, 6] have described a push/relabel algorithm using
Schrijver’s subroutine to improve the running time bound. In this paper, we combine
the scaling scheme with the push/relabel technique to yield a faster combinatorial
algorithm.

Let γ denote the time required for computing the function value of f and M
denote the maximum absolute value of f . The IFF scaling algorithm minimizes an
integral submodular function in O(n5γ logM) time. The strongly polynomial version

∗Received by the editors November 12, 2001; accepted for publication (in revised form) March 31,
2003; published electronically June 10, 2003. This research was supported in part by the Sumitomo
Foundation and a Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports
and Culture of Japan.

http://www.siam.org/journals/sicomp/32-4/39781.html
†Department of Mathematical Informatics, University of Tokyo, Tokyo 113-8656, Japan (iwata@

mist.i.u-tokyo.ac.jp).

833

834 SATORU IWATA

runs in O(n7γ log n) time, whereas an improved variant of Schrijver’s algorithm runs
in O(n7γ + n8) time [6].

The time complexity of our new scaling algorithm is O((n4γ + n5) logM). Since
the function evaluation oracle has to identify an arbitrary subset of V as its argument,
it is natural to assume γ is at least linear in n. With this assumption, the new
algorithm is faster than the IFF algorithm by a factor of n. The strongly polynomial
version of the new scaling algorithm runs in O((n6γ + n7) log n) time. This is an
improvement over the previous best bound by essentially a linear factor in n.

These combinatorial algorithms perform multiplications and divisions, although
the problem of submodular function minimization does not involve those operations.
Schrijver [16] asks if one can minimize submodular functions in strongly polynomial
time using only additions, subtractions, comparisons, and oracle calls for the function
values. Such an algorithm is called “fully combinatorial.” A very recent paper [12]
settles this problem by developing a fully combinatorial variant of the IFF algorithm.
Similarly, we can implement the strongly polynomial version of our scaling algorithm
in a fully combinatorial manner. The resulting algorithm runs in O(n8γ log2 n) time,
improving the previous O(n9γ log2 n) bound by a factor of n.

This paper is organized as follows. Section 2 provides preliminaries on submodular
functions. In section 3, we describe the new scaling algorithm. Section 4 is devoted
to its complexity analysis. Finally, in section 5, we discuss its extensions as well as a
fully combinatorial implementation.

2. Preliminary. This section provides preliminaries on submodular functions.
See [8, 14] for more details and general background.

For a vector x ∈ RV and a subset Y ⊆ V , we denote x(Y) =
∑

u∈Y x(u). We
also denote x− the vector in RV with x−(u) = min{x(u), 0}. For each u ∈ V , let χu

denote the vector in RV with χu(u) = 1 and χu(v) = 0 for v ∈ V \{u}.
For a submodular function f : 2V → R with f(∅) = 0, we consider the base

polyhedron

B(f) = {x | x ∈ RV , x(V) = f(V), ∀Y ⊆ V : x(Y) ≤ f(Y)}.

A vector in B(f) is called a base. In particular, an extreme point of B(f) is called
an extreme base. An extreme base can be computed by the greedy algorithm of
Edmonds [4] and Shapley [17] as follows.

Let L = (v1, . . . , vn) be a linear ordering of V . For any vj ∈ V , we denote
L(vj) = {v1, . . . , vj}. The greedy algorithm with respect to L generates an extreme
base y ∈ B(f) by

y(u) := f(L(u)) − f(L(u)\{u}).(2.1)

Conversely, any extreme base can be obtained in this way with an appropriate linear
ordering.

Lemma 2.1. Let Q and R be disjoint subsets of V such that Q ∪ R forms an
interval in L. Let L′ be the linear ordering obtained from L by moving Q to the place
immediately after R without changing the orderings in Q and in R. Then the extreme
base y′ generated by L′ satisfies y′(q) ≤ y(q) for q ∈ Q and y′(r) ≥ y(r) for r ∈ R.

Proof. For any q ∈ Q, we have L′(q) ⊇ L(q). Therefore, the submodularity of f
implies y′(q) = f(L′(q)) − f(L′(q)\{q}) ≤ f(L(q)) − f(L(q)\{q}) = y(q). Similarly,
L′(r) ⊆ L(r) holds for r ∈ R. Then it follows from the submodularity of f that
y′(r) = f(L′(r)) − f(L′(r)\{r}) ≥ f(L(r)) − f(L(r)\{r}) = y(r).

SUBMODULAR FUNCTION MINIMIZATION 835

For any base x ∈ B(f) and any subset Y ⊆ V , we have x−(V) ≤ x(Y) ≤ f(Y).
The following theorem shows that these inequalities are in fact tight for appropriately
chosen x and Y .

Theorem 2.2. For a submodular function f : 2V → R, we have

max{x−(V) | x ∈ B(f)} = min{f(Y) | Y ⊆ V }.
Moreover, if f is integer-valued, then the maximizer x can be chosen from among
integral bases.

This theorem is immediate from the vector reduction theorem on polymatroids
due to Edmonds [4]. It has motivated combinatorial algorithms for minimizing sub-
modular functions.

3. A scaling algorithm. This section presents a new scaling algorithm for
minimizing an integral submodular function f : 2V → Z.

The algorithm consists of scaling phases with a scale parameter δ ≥ 0. It keeps
a set of linear orderings {Li | i ∈ I} of the vertices in V . We denote v �i u if
v precedes u in Li or v = u. Each linear ordering Li generates an extreme base
yi ∈ B(f) by the greedy algorithm. The algorithm also keeps a base x ∈ B(f) as a
convex combination x =

∑
i∈I λiyi of the extreme bases. Initially, I = {0} with an

arbitrary linear ordering L0 and λ0 = 1.
Furthermore, the algorithm works with a flow in the complete directed graph on

the vertex set V . The flow is represented as a skew-symmetric function ϕ : V ×V → R.
Each arc capacity is equal to δ. Namely, ϕ(u, v) + ϕ(v, u) = 0 and −δ ≤ ϕ(u, v) ≤ δ
hold for any pair of vertices u, v ∈ V . The boundary ∂ϕ is defined by ∂ϕ(u) =∑

v∈V ϕ(u, v) for u ∈ V . Initially, ϕ(u, v) = 0 for any u, v ∈ V .
Each scaling phase aims at increasing z−(V) for z = x + ∂ϕ. Given a flow

ϕ, the procedure constructs an auxiliary directed graph Gϕ = (V,Aϕ) with arc set
Aϕ = {(u, v) | u �= v, ϕ(u, v) ≤ 0}. Let S = {v | z(v) ≤ −δ} and T = {v | z(v) ≥ δ}.
A directed path in Gϕ from S to T is called an augmenting path.

Each scaling phase also keeps a valid labeling d. A labeling d : V → Z is valid if
d(u) = 0 for u ∈ S and v �i u implies d(v) ≤ d(u) + 1. A valid labeling d(v) serves as
a lower bound on the number of arcs from S to v in the directed graph GI = (V,AI)
with the arc set AI = {(u, v) | ∃i ∈ I, v �i u}.

If there is an augmenting path P , the algorithm augments the flow ϕ along P
by ϕ(u, v) := ϕ(u, v) + δ and ϕ(v, u) := ϕ(v, u) − δ for each arc (u, v) in P . This
procedure is referred to as Augment(ϕ, P). As a result of Augment(ϕ, P), the initial
vertex s of P may get rid of S and no new vertex joins S. Thus Augment(ϕ, P) does
not violate the validity of d.

Let W be the set of vertices reachable from S in Gϕ, and let Z be the set of
vertices that attains the minimum labeling in V \W . A pair (u, v) of u ∈ W and
v ∈ Z is called active for i ∈ I if v is the first vertex of Z in Li and u is the last vertex
in Li with v �i u and d(v) = d(u) + 1. A triple (i, u, v) is also called active if (u, v)
is active for i ∈ I. The procedure Multiple-Exchange(i, u, v) is applicable to an active
triple (i, u, v).

For an active triple (i, u, v), the set of vertices from v to u in Li is called an active
interval. The active interval is divided into Q and R by Q = {w | w ∈W, v ≺i w �i u}
and R = {w | w ∈ V \W, v �i w ≺i u}.

The procedure Multiple-Exchange(i, u, v) moves the vertices in R to the place
immediately after u in Li, without changing the ordering in Q and in R. Then it
computes an extreme base yi generated by the new Li. By Lemma 2.1, this results

836 SATORU IWATA

in yi(q) ≥ y◦i (q) for q ∈ Q and yi(r) ≤ y◦i (r) for r ∈ R, where y◦i denotes the previous
yi.

Consider a complete bipartite graph with the vertex sets Q and R. The algorithm
finds a flow ξ : Q×R → R+ such that

∑
r∈R ξ(q, r) = yi(q)−y◦i (q) for each q ∈ Q and∑

q∈Q ξ(q, r) = y◦i (r) − yi(r) for each r ∈ R. Such a flow can be obtained easily by
the so-called northwest corner rule. Then the procedure computes α = min{λi, δ/β}
with β = max{ξ(q, r) | q ∈ Q, r ∈ R} and moves x by x := x + α(yi − y◦i). In order
to keep z invariant, the procedure adjusts the flow ϕ by ϕ(q, r) := ϕ(q, r) − αξ(q, r)
and ϕ(r, q) := ϕ(r, q) +αξ(q, r) for every (q, r) ∈ Q×R. The resulting ϕ satisfies the
capacity constraints due to the choice of α, and the vertices in W remain reachable
from S in Gϕ.

If α = λi, Multiple-Exchange(i, u, v) is called saturating. Otherwise, it is called
nonsaturating. In a nonsaturating Multiple-Exchange(i, u, v), a new index k is added
to I. The associated linear ordering Lk is the previous Li. The coefficient λk is
determined by λk := λi − α, and then λi is replaced by λi := α. Thus the algorithm
continues to keep x as a convex combination x =

∑
i∈I λiyi.

Suppose the labeling d is valid before the algorithm applies Multiple-Exchange to
an active triple (i, u, v). For any vertex w in the active interval, d(v) ≤ d(w) + 1 and
d(w) ≤ d(u)+1 hold. These inequalities and d(v) = d(u)+1 imply d(v) ≤ d(w) ≤ d(u).
Note that d(v) ≤ d(r) holds for any r ∈ R ⊆ V \W . Hence we have d(r) = d(v) for
any r ∈ R. If Multiple-Exchange(i, u, v) adds a new arc (s, t) to AI , then s ∈ Q and
t ∈ R. Therefore, we have d(t) = d(v) ≤ d(s) + 1. Thus Multiple-Exchange(i, u, v)
does not violate the validity of d.

Let h denote the number of vertices in the active interval. The number of function
evaluations required for computing the new extreme base yi by the greedy algorithm
is at most h. The northwest corner rule can be implemented to run in O(h) time,
and the number of arcs (q, r) with ξ(q, r) > 0 is at most h − 1. Thus the total time
complexity of Multiple-Exchange(i, u, v) is O(hγ).

If there is no active triple, the algorithm applies Relabel to each v ∈ Z. The
procedure Relabel(v) increments d(v) by one. Then the labeling d remains valid.

The number of extreme bases in the expression of x increases by one as a result
of nonsaturating Multiple-Exchange. In order to reduce the complexity, the algorithm
occasionally applies a procedure Reduce(x, I) that computes an expression of x as a
convex combination of affinely independent extreme bases chosen from the currently
used ones. This computation takes O(n2|I|) time with the aid of Gaussian elimination.

We are now ready to describe the new scaling algorithm.
Step 0: Let L0 be an arbitrary linear ordering. Compute an extreme base y0 by the

greedy algorithm with respect to L0. Put x := y0, λ0 := 1, I := {0}, and
δ := |x−(V)|/n2.

Step 1: Put d(v) := 0 for v ∈ V , and ϕ(u, v) := 0 for u, v ∈ V .
Step 2: Put S := {v | z(v) ≤ −δ} and T := {v | z(v) ≥ δ}, where z = x + ∂ϕ. Let

W be the set of vertices reachable from S in Gϕ.
Step 3: If there is an augmenting path P , then do the following.

(3-1) Apply Augment(ϕ, P).
(3-2) Apply Reduce(x, I).
(3-3) Go to Step 2.

Step 4: Compute - := min{d(v) | v ∈ V \W} and put Z := {v | v ∈ V \W, d(v) = -}.
If - < n, then do the following.
(4-1) If there is an active triple (i, u, v), then apply Multiple-Exchange(i, u, v).
(4-2) Otherwise, apply Relabel(v) for each v ∈ Z.

SUBMODULAR FUNCTION MINIMIZATION 837

(4-3) Go to Step 2.
Step 5: Determine the set X of vertices reachable from S in GI . If δ ≥ 1/n2, then

apply Reduce(x, I), δ := δ/2, and go to Step 1.
We now show that the last set X obtained by the scaling algorithm is a minimizer

of f .
Lemma 3.1. At the end of each scaling phase, z−(V) ≥ f(X) − n(n+ 1)δ/2.
Proof. At the end of each scaling phase, d(v) = n for every v ∈ V \W . Since d(v)

is a lower bound on the number of arcs from S to v in GI , this means there is no
directed path from S to V \W in GI . Thus we have X ⊆ W ⊆ V \T , which implies
z(v) ≤ δ for v ∈ X. It follows from S ⊆ X that z(v) ≥ −δ for v ∈ V \X. Since there
is no arc in GI emanating from X, we have yi(X) = f(X) for each i ∈ I, and hence
x(X) =

∑
i∈I λiyi(X) = f(X). We also have ∂ϕ(X) ≥ −δ |X|·|V \X| ≥ −n(n−1)δ/2.

Therefore, we have z−(V) = z−(X) + z−(V \X) ≥ z(X) − δ|X| − δ|V \X| = x(X) +
∂ϕ(X) − nδ ≥ f(X) − n(n+ 1)δ/2.

Lemma 3.2. At the end of each scaling phase, x−(V) ≥ f(X) − n2δ.
Proof. The set Y = {v | x(v) < 0} satisfies x−(V) = x(Y) = z(Y) − ∂ϕ(Y) ≥

z−(V) − ∂ϕ(Y). Note that ∂ϕ(Y) ≤ δ |Y | · |V \Y | ≤ n(n− 1)δ/2. Therefore, we have
x−(V) ≥ z−(V) − n(n − 1)δ/2, which together with Lemma 3.1 implies x−(V) ≥
f(X) − n2δ.

Theorem 3.3. At the end of the last scaling phase, X is a minimizer of f .
Proof. Since δ < 1/n2 in the last scaling phase, Lemma 3.2 implies x−(V) >

f(X) − 1. Then it follows from the integrality of f that f(X) ≤ f(Y) holds for any
Y ⊆ V .

4. Complexity. This section is devoted to complexity analysis of the new scaling
algorithm.

Lemma 4.1. Each scaling phase performs Augment O(n2) times.
Proof. At the beginning of each scaling phase, the set X obtained in the previous

scaling phase satisfies z−(V) ≥ f(X) − 2n2δ by Lemma 3.2. For the first scaling
phase, we have the same inequality by taking X = ∅. Note that z−(V) ≤ z(X) ≤
f(X) + n(n − 1)δ/2 throughout the algorithm. Thus each scaling phase increases
z−(V) by at most 3n2δ. Since each augmentation increases z−(V) by δ, each scaling
phase performs at most 3n2 augmentations.

Lemma 4.2. Each scaling phase performs Relabel O(n2) times.
Proof. Each application of Relabel(v) increases d(v) by one. Since Relabel(v) is

applied only if d(v) < n, Relabel(v) is applied at most n times for each v ∈ V in a
scaling phase. Thus the total number of relabels in a scaling phase is at most n2.

Lemma 4.3. The number of indices in I is at most 2n.
Proof. A new index is added as a result of nonsaturating Multiple-Exchange. In

a nonsaturating Multiple-Exchange(i, u, v), the arc (q, r) that determines β satisfies
ϕ(q, r) ≤ 0 after the update of ϕ, and the vertex r in R becomes reachable from S
in Gϕ. This means the set W is enlarged. Thus there are at most n applications
of nonsaturating Multiple-Exchange between augmentations. Hence the number of
indices added between augmentations is at most n. After each augmentation, the
number of indices is reduced to at most n. Therefore, |I| ≤ 2n holds throughout the
algorithm.

In order to analyze the number of function evaluations in each scaling phase,
we now introduce the notion of reordering phase. A reordering phase consists of
consecutive applications of Multiple-Exchange between those of Relabel or Reduce. By
Lemmas 4.1 and 4.2, each scaling phase performs O(n2) reordering phases.

838 SATORU IWATA

Lemma 4.4. There are O(n2) function evaluations in each reordering phase.
Proof. The number of function evaluations in Multiple-Exchange(i, u, v) is at most

the number of vertices in the active interval for (i, u, v). In order to bound the
total number of function evaluations in a reordering phase, suppose the procedure
Multiple-Exchange(i, u, v) marks each pair (i, w) for w in the active interval. We now
intend to claim that any pair (i, w) of i ∈ I and w ∈ V is marked at most once in a
reordering phase.

In a reordering phase, the algorithm does not change the labeling d nor does it
delete a vertex from W . Hence the minimum value of d in V \W is nondecreasing.
After execution of Multiple-Exchange(i, u, v), there will not be an active pair for i
until the minimum value of d in V \W becomes larger. Let Multiple-Exchange(i, s, t)
be the next application of Multiple-Exchange to the same index i ∈ I. Then we have
d(t) > d(v) = d(u) + 1, which implies v ≺i u ≺i t ≺i s in the linear ordering Li before
Multiple-Exchange(i, u, v). Thus a pair (i, w) marked in Multiple-Exchange(i, u, v) will
not be marked again in the reordering phase.

Since |I| ≤ 2n by Lemma 4.3, there are at most 2n2 possible marks without
duplications. Therefore, the total number of function evaluations in a reordering
phase is O(n2).

In order to find an active triple efficiently in Step (4-1), we keep track of possible
candidates of active triples. For each i ∈ I and - = 1, . . . , n − 1, let ui� denote the
last vertex u in Li such that u ∈W and d(u) = -− 1. Similarly, vi� denotes the first
vertex v in Li such that v ∈ V \W and d(v) = -. Then (i, ui�, vi�) is an active triple if
- = min{d(v) | v ∈ V \W} and vi� ≺ ui�. At the beginning of each reordering phase,
we scan the linear orderings to find all those candidates in O(n2) time.

In the rest of the reordering phase, we update the candidates whenever a new
vertex is added to W . Let w be the vertex that is added to W . For each i ∈ I, if
ui� � w with d(w) = - − 1, then we replace ui� by w. If w = vi�, then we find the
new vi� by scanning Li. Thus it takes O(n2) time to update the candidates when a
new vertex is added to W . Since at most n vertices are added to W , each reordering
phase requires O(n3) fundamental operations.

Theorem 4.5. The algorithm performs O(n4 logM) function evaluations and
O(n5 logM) arithmetic computations.

Proof. Consider the set U = {u | x(u) > 0} for the initial base x ∈ B(f). Then we
have x−(V) = x(V) − x(U) ≥ f(V) − f(U) ≥ −2M . Therefore, the initial value of δ
satisfies δ ≤ 2M/n2. Each scaling phase cuts the value of δ in half, and the algorithm
terminates when δ < 1/n2. Thus the algorithm consists of O(logM) scaling phases.

Since each scaling phase performs O(n2) reordering phases, Lemma 4.4 implies
that the number of function evaluations in a scaling phase is O(n4). In addition, each
reordering phase requires O(n3) steps to keep track of active triples. By Lemma 4.1,
each scaling phase performs O(n2) calls of Reduce, which requires O(n3) arithmetic
computations. Thus each scaling phase consists of O(n4) function evaluations and
O(n5) arithmetic computations. Therefore, the total running time bound is O((n4γ+
n5) logM).

5. Discussions. A family D ⊆ 2V is called a distributive lattice (or a ring
family) if X ∩ Y ∈ D and X ∪ Y ∈ D for any pair of X,Y ∈ D. A compact
representation of D is given by a directed graph as follows. Let D = (V, F) be a
directed graph with the arc set F . A subset Y ⊆ V is called an ideal of D if no arc
enters Y in D. Then the set of ideals of D forms a distributive lattice. Conversely,
any distributive lattice D ⊆ 2V with ∅, V ∈ D can be represented in this way due to

SUBMODULAR FUNCTION MINIMIZATION 839

Birkhoff’s representation theorem [1, Theorem 2.5]. Moreover, contracting strongly
connected components of D to single vertices, we may assume that the directed graph
D is acyclic.

For minimizing a submodular function f on D, we apply the scaling algorithm with
a minor modification. The modified version uses the directed graph Gϕ = (V,Aϕ∪F)
instead of Gϕ = (V,Aϕ). The initial linear ordering L0 must be consistent with D;
i.e., v �i u if (u, v) ∈ F . Then all the linear orderings that appear in the algorithm
will be consistent with D. This ensures that the set X obtained at the end of each
scaling phase belongs to D. Thus the modification of our scaling algorithm finds a
minimizer of f in D.

Iwata, Fleischer, and Fujishige [13] also describe a strongly polynomial algorithm
that repeatedly applies their scaling algorithm with O(logn) scaling phases. The
number of iterations is O(n2). Replacing the scaling algorithm by the new one, we
obtain an improved strongly polynomial algorithm that runs in O((n6γ + n7) log n)
time.

A very recent paper [12] has shown that the strongly polynomial IFF algorithm
can be implemented by using only additions, subtractions, comparisons, and oracle
calls for function values. Similarly, the new strongly polynomial scaling algorithm can
be made fully combinatorial as follows.

The first step towards a fully combinatorial implementation is to neglect Reduce.
This causes growth of the number of extreme bases for convex combination. However,
the number is still bounded by a polynomial in n. Since the number of indices added
between augmentations is at most n, each scaling phase yields O(n3) new extreme
bases. Hence the number of extreme bases through the O(log n) scaling phases is
O(n3 log n).

The next step is to choose an appropriate step length in Multiple-Exchange so that
the coefficients should be rational numbers with a common denominator bounded by
a polynomial in n. Let θ denote the value of δ in the first scaling phase. Then
κ = θ/δ is an integer. For each i ∈ I, we keep λi = µi/κ with an integer µi. We
then modify the definition of saturating Multiple-Exchange. Multiple-Exchange(i, u, v)
is now called saturating if λiξ(q, r) ≤ ϕ(q, r) for every (q, r) ∈ Q × R. Otherwise,
it is called nonsaturating. In nonsaturating Multiple-Exchange(i, u, v), let ν be the
minimum integer such that νξ(q, r) > ϕ(q, r)κ for some (q, r) ∈ Q × R. Such an
integer ν can be computed by binary search. Then the new coefficients λk and λi are
determined by µk := µi − ν and µi := ν. Thus the coefficients are rational numbers
whose common denominator is κ, which is bounded by a polynomial in n through
the O(logn) scaling phases. Then it is easy to implement this algorithm using only
additions, subtractions, comparisons, and oracle calls for the function values.

Finally, we discuss time complexity of the resulting fully combinatorial algorithm.
The algorithm performs O(n2) iterations of O(logn) scaling phases. Since it keeps
O(n3 log n) extreme bases, each scaling phase requires O(n6 log n) oracle calls for
function evaluations and O(n7 log n) fundamental operations. Therefore, the total
running time is O((n8γ+n9) log2 n). This improves the previous O(n9γ log2 n) bound
in [12] by essentially a linear factor in n.

In order to reduce this time complexity, McCormick [15] suggests a more efficient
implementation for finding active triples. For each i ∈ I and - = 1, . . . , n, let σi�
denote the last vertex s in Li with d(s) = -− 1. Similarly, τi� denotes the first vertex
t in Li with d(t) = -. Then there is an active triple (i, u, v) with d(v) = - only if
τi� ≺i σi�. At the beginning of each reordering phase we scan the linear orderings to

840 SATORU IWATA

find all σi� and τi� in O(n|I|) time. Note that within the reordering phase, σi� and
τi� are invariant until the algorithm performs Multiple-Exchange(i, u, v) with d(v) = -.
Once such a Multiple-Exchange is applied, there will be no active triples for the same
i and - in the rest of the reordering phase.

For a pair of i and - with τi� ≺ σi�, we may restrict the search for active triples
to the interval between τi� and σi� in Li. Since these intervals are disjoint, the
total number of fundamental operations required for finding active triples is O(n|I|)
in each reordering phase. This reduces the number of fundamental operations in a
scaling phase to O(n6 log n). Thus the resulting fully combinatorial algorithm runs in
O(n8γ log2 n) time.

Acknowledgments. The author is grateful to Lisa Fleischer, Satoru Fujishige,
Yasuko Matsui, Tom McCormick, and Kazuo Murota for stimulating conversations
and helpful comments on the manuscript. The idea of Multiple-Exchange was origi-
nally suggested by Satoru Fujishige as heuristics to improve the practical performance
of the IFF algorithm. Lisa Fleischer kindly pointed out an error in an earlier version
of this paper, and Tom McCormick generously allowed me to include his idea for
implementing the algorithm that leads to the bound of the fully combinatorial ver-
sion. Finally, the author wishes to thank two anonymous referees for many helpful
suggestions to improve the presentation of this paper.

REFERENCES

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, New York, 1979.
[2] W. H. Cunningham, Testing membership in matroid polyhedra, J. Combin. Theory Ser. B, 36

(1984), pp. 161–188.
[3] W. H. Cunningham, On submodular function minimization, Combinatorica, 5 (1985), pp. 185–

192.
[4] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Combinatorial Struc-

tures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds., Gordon
and Breach, New York, 1970, pp. 69–87.

[5] L. Fleischer and S. Iwata, Improved algorithms for submodular function minimization and
submodular flow, in Proceedings of the 32nd ACM Symposium on Theory of Computing,
Portland, OR, 2000, ACM, New York, 2000, pp. 107–116.

[6] L. Fleischer and S. Iwata, A push-relabel framework for submodular function minimization
and applications to parametric optimization, Discrete Appl. Math., to appear.

[7] L. Fleischer, S. Iwata, and S. T. McCormick, A faster capacity scaling algorithm for sub-
modular flow, Math. Program., 92 (2002), pp. 119–139.

[8] S. Fujishige, Submodular Functions and Optimization, North-Holland, Amsterdam, 1991.
[9] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.
[10] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, Springer-Verlag, Berlin, 1988.
[11] S. Iwata, A capacity scaling algorithm for convex cost submodular flows, Math. Programming,

76 (1997), pp. 299–308.
[12] S. Iwata, A fully combinatorial algorithm for submodular function minimization, J. Combin.

Theory Ser. B, 84 (2002), pp. 203–212.
[13] S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial algorithm for

minimizing submodular functions, J. ACM, 48 (2001), pp. 761–777.
[14] L. Lovász, Submodular functions and convexity, in Mathematical Programming — The State

of the Art, A. Bachem, M. Grötschel, and B. Korte, eds., Springer-Verlag, Berlin, 1983,
pp. 235–257.

[15] S. T. McCormick, Submodular function minimization, in Handbook of Discrete Optimization,
K. Aardal, G. Nemhauser, and R. Weismantel, eds., Elsevier, New York, to appear.

[16] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time, J. Combin. Theory Ser. B, 80 (2000), pp. 346–355.

[17] L. S. Shapley, Cores of convex games, Internat. J. Game Theory, 1 (1971), pp. 11–26.

