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General Terms: Algorithms
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1. Introduction

Let V be a finite nonempty set of cardinalityn. A function f defined on all the
subsets ofV is calledsubmodularif it satisfies

f (X)+ f (Y) ≥ f (X ∪ Y)+ f (X ∩ Y), ∀X,Y ⊆ V.

This paper presents a combinatorial polynomial-time algorithm for finding a min-
imizer of a general submodular function, provided that an oracle for evaluating
the function value is available. Throughout this paper, we assume without loss of
generality thatf (∅) = 0 by subtracting the scalarf (∅) from every function value.

Submodularity is a discrete analog of convexity [Frank 1982; Fujishige 1984b;
Lovász 1983], and submodular functions arise naturally in various fields, including
combinatorial optimization, computational biology, game theory, scheduling, prob-
ability, and information theory. Examples include the matroid rank function, the
cut capacity function, and the entropy function. Problems in diverse areas such as
dynamic flows [Hoppe and Tardos 2000], facility location [Tamir 1993], and multi-
terminal source coding [Fujishige 1978; Han 1979] rely on algorithms for general
submodular function minimization. Submodular function minimization is also used
to solve submodular flow problems [Cunningham and Frank 1985; Edmonds and
Karp 1972; Fujishige and Iwata 2000] which generalize network flow and matroid
optimization problems, and model several graph augmentation and connectivity
problems [Edmonds and Giles 1977; Frank and Tardos 1988; 1989]. For gen-
eral background on submodular functions, see Frank and Tardos [1998], Fujishige
[1991], and Lovász [1983].

There are two natural polyhedra inRV associated with a submodular function
f . Thesubmodular polyhedronP( f ) and thebase polyhedronB( f ) are defined by

P( f ) = {x | x ∈ RV , ∀X ⊆ V : x(X) ≤ f (X)},
B( f ) = {x | x ∈ P( f ), x(V) = f (V)},

wherex(X) =∑v∈X x(v). Linear optimization problems over these polyhedra can
be solved efficiently by the greedy algorithm [Edmonds 1970].

The first polynomial-time algorithm for submodular function minimization is
due to Grötschel et al. [1981]. They showed, in general, the polynomial-time
equivalence of separation and optimization for polyhedra via the ellipsoid method.
The separation problem of deciding whether0 ∈ P( f µ), for the submodular func-
tion f µ defined by subtracting scalarµ ≤ 0 from f (X) for every nonemptyX ⊆ V ,
is equivalent to determining if the minimum of the submodular functionf is at least
µ. This problem can be solved using the ellipsoid algorithm in conjunction with the
greedy algorithm that solves the optimization problem over P(f µ). Since the maxi-
mum valueµ∗ ofµwith 0 ∈ P( f µ) equals the minimum value off , embedding the
ellipsoid algorithm in a binary search forµ∗ yields a polynomial-time algorithm
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for submodular function minimization. However, the ellipsoid method is far from
being efficient in practice and is not combinatorial.

In this paper, we present a combinatorial polynomial-time algorithm for sub-
modular function minimization. Our algorithm uses an augmenting path approach
with reference to a convex combination of extreme points of the associated base
polyhedron. Such an approach was first introduced by Cunningham [1984] for
minimizing submodular functions that arise from the separation problem for ma-
troid polyhedra. This was adapted for general submodular function minimization
by Bixby et al. [1985] and improved by Cunningham [1985] to obtain the first com-
binatorial, pseudopolynomial-time algorithm. More recently, Narayanan [1995]
introduced a rounding technique that improves Cunningham’s algorithm for ma-
troid polyhedra. Based on a minimum-norm base characterization of minimizers
[Fujishige 1980; 1984a], Sohoni [1992] devised another pseudopolynomial-time
algorithm. For a closely related problem of finding a nonempty proper subset that
minimizes a symmetric submodular functionf , Queyranne [1998] has described a
combinatorial strongly polynomial algorithm. (A symmetric set functionf satisfies
f (X) = f (V\X) for all X ⊆ V .) Queyranne’s algorithm extends the undirected
minimum-cut algorithm of Nagamochi and Ibaraki [1992].

A fundamental tool in the above algorithms for general submodular function
minimization [Bixby et al. 1985; Cunningham 1984; 1985; Narayanan 1995] is to
move from one extreme point of the base polyhedron to an adjacent extreme point
via an exchange operation that increases one coordinate and decreases another
coordinate by the same quantity. This quantity is called the exchange capacity.
These previous methods maintain a directed graph with a vertex set given by the
underlying set of the submodular function, and with an arc set that represents a
set of possible exchange operations. They progress by iteratively performing a
sequence of exchange operations along an augmenting path. These algorithms are
not known to be polynomial since the best-known lower bound on the amount
of each augmentation is too small. The amount of augmentation is determined
by exchange capacities multiplied by the convex combination coefficients. These
coefficients may be as small as the reciprocal of the maximum absolute value of
the submodular function.

To make a pseudopolynomial-time algorithm run in polynomial time, Edmonds
and Karp [1972] introduced the scaling technique in the design of the first
polynomial-time minimum cost flow algorithm. Since this initial success, there
have been many polynomial-time scaling algorithms designed for various combi-
natorial optimization problems. However, a straightforward attempt to apply the
scaling technique does not work for submodular function minimization. This is
mainly because rounding a submodular function may violate the submodularity.
More specifically, the set functionf ′ defined byf ′(X) = b f (X)c is not necessar-
ily submodular even iff is a submodular function.

To overcome this difficulty, we employ a scaling framework that uses the com-
plete directed graph on the underlying set, letting the capacity of this arc set depend
directly on the scaling parameterδ. The complete directed graph serves as a relax-
ation of the submodular functionf to another submodular functionfδ defined by
fδ(X) = f (X)+ δ |X| · |V\X|. Note that the second termδ |X| · |V\X| is the cut
function of this additional graph, and hence submodular.

The relaxationfδ has a natural interpretation in the setting of network flows. In
their cut-canceling algorithm for minimum cost flows, Ervolina and McCormick
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[1993] relax the capacity of each flow arc by the scaling parameterδ. For submodular
function minimization, the “graph” is the set of possible exchange arcs, which is
really the complete directed graph onV .

The use of this additional graph was first introduced by Iwata [1997] as the first
capacity-scaling algorithm for submodular flow. Since that paper was published,
the submodular flow algorithms of Iwata et al. [1999] and Fleischer et al. [2001]
have developed the techniques further. In particular, incorporating ideas from Iwata
et al. [1999], the algorithm in Fleischer et al. [2001] introduces a method to avoid
exchange operations on an augmenting path. This is done by carefully performing
exchange operations during the search for an augmenting path of sufficient residual
capacity. Our work in the present paper employs this technique to develop a capacity
scaling, augmenting path algorithm for submodular function minimization.

The resulting algorithm usesO(n5 log M) arithmetic steps and function evalu-
ations, whereM = max{| f (X)| | X ⊆ V}. Even under the assumption thatM is
bounded by a constant, our scaling algorithm is faster than the best previous combi-
natorial, pseudopolynomial-time algorithm due to Cunningham [1985], which uses
O(n6M log (nM)) arithmetic steps and function evaluations.

We then modify our scaling algorithm to run in strongly polynomial time. A
strongly polynomial algorithm for submodular function minimization performs a
number of steps bounded by a polynomial in the size of the underlying set, inde-
pendent ofM . Grötschel et al. [1988] described the first such algorithm using the
ellipsoid method. To make a polynomial-time algorithm run in strongly polynomial
time, Frank and Tardos [1987] developed a generic preprocessing technique that is
applicable to a fairly wide class of combinatorial optimization problems including
submodular flow (assuming an oracle for computing exchange capacities) and test-
ing membership in matroid polyhedra. However, this framework does not readily
apply to our scaling algorithm for submodular function minimization. Instead, we
establish a proximity lemma, and use it to devise a combinatorial algorithm that re-
peatedly detects either a new element contained in every minimizer, a new element
not contained in any minimizer, or a new ordered pair (u, v) ∈ V such that any
minimizer containingu also containsv. The resulting algorithm usesO(n7 logn)
arithmetic steps and function evaluations. Our approach is based on the general
technique originated by Tardos [1985] in the design of the first strongly polynomial
minimum cost flow algorithm.

Independently, Schrijver [2000] has also developed a combinatorial strongly
polynomial algorithm for general submodular function minimization based on Cun-
ningham’s approach. Instead of designing an algorithm that uses provably large
augmentations as we do here, Schrijver’s complexity analysis depends on an algo-
rithmic framework that uses paths whose lengths are provably nondecreasing. His
algorithm can be shown to useO(n8) function evaluations andO(n9) arithmetic
steps. A modification of this algorithm improves both of these quantities by a linear
factor [Fleischer and Iwata 2000]. Both Schrijver’s algorithm and ours use Gaus-
sian elimination to maintain the representation of a vector in B(f ) as the convex
combination of a small number of extreme points. However, we do not require this
step to establish the polynomial time complexity of our algorithm.

Schrijver [2000] poses an open problem to design a strongly polynomial algo-
rithm for submodular function minimization that consists only of additions, sub-
tractions, comparisons, and oracle calls. The symmetric submodular function min-
imization algorithm of Queyranne [1998] is “fully combinatorial” in this sense.
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Iwata [2001] has very recently answered this question by describing a fully combi-
natorial implementation of the strongly polynomial algorithm in the present paper.

This paper is organized as follows: Section 2 provides background on submod-
ular functions. Section 3 presents our scaling algorithm for submodular function
minimization, and Section 4 gives a strongly polynomial algorithm. In Section 5,
we discuss the variants of our algorithms without Gaussian elimination. Finally, we
conclude with extensions in Section 6.

2. Preliminaries

We denote byZ andR the set of integers and the set of reals, respectively. For any
vectorx ∈ RV and any subsetX ⊆ V , the expressionx(X) denotes

∑
v∈X x(v).

For any vectorx ∈ RV , we denote byx+ and x− the vectors inRV defined by
x+(v) = max{0, x(v)} andx−(v) = min{0, x(v)} for v ∈ V . For eachu ∈ V , let
χu denote the vector inRV such thatχu(u) = 1 andχu(v) = 0 for v ∈ V\{u}.

A vector in the base polyhedron B(f ) is called abase, and an extreme point of
B( f ) anextreme base. It is easy to see that for any basex ∈ B( f ) and any subset
Y ⊆ V we havex−(V) ≤ x(Y) ≤ f (Y). The following fundamental lemma shows
that these inequalities are in fact tight for appropriately chosenx andY. Although
the lemma easily follows from a theorem of Edmonds [1970] on the vector reduction
of polymatroids, we provide a direct proof for completeness.

LEMMA 2.1. For a submodular function f: 2V → R, we have

max{x−(V) | x ∈ B( f )} = min{ f (X) | X ⊆ V}. (2.1)

If f is integer-valued, then the maximizer x can be chosen from among integral
bases.

PROOF. Let x be a maximizer in the left-hand side. For anys, t ∈ V with
x(s) < 0 andx(t) > 0, there exists a subsetXst such thats ∈ Xst ⊆ V\{t} and
x(Xst) = f (Xst). Then it follows from the submodularity off that

X =
⋃

s:x(s)<0

⋂
t :x(t)>0

Xst

satisfiesx(X) = f (X). Sincex(u) ≤ 0 for everyu ∈ X andx(v) ≥ 0 for every
v ∈ V\X, we havex−(V) = x(X) = f (X), which establishes the min-max
relation. The integrality assertion follows from the same argument starting with an
integral basex that maximizesx−(V) over all integral bases.

It is not completely obvious that Lemma 2.1 provides a good characterization
of a minimizer of f . In fact, provingx ∈ B( f ) by the definition would require
exponential number of function evaluations. Ify is an extreme base, however, there
is a compact proof thaty ∈ B( f ) resulting from the greedy algorithm described
below. However, the maximizer of (2.1) may not be an extreme base. To handle
this, Cunningham [1984; 1985] suggested maintaining a basex ∈ B( f ) as a convex
combination of extreme bases, thus yielding a compact proof thatx ∈ B( f ) for any
basex generated by his algorithm.

Let L = (v1, . . . , vn) be a linear ordering ofV . For anyj ∈ {1, . . . ,n}, we define
L(v j ) = {v1, . . . , v j }. The greedy algorithm of Edmonds [1970] and Shapley [1971]
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computes an extreme basey ∈ B( f ) associated withL by

y(v) := f (L(v))− f (L(v)\{v}), ∀v ∈ V. (2.2)

Thus, the linear orderingL provides a certificate thaty is an extreme base. Con-
versely, any extreme base can be generated by applying the greedy algorithm to an
appropriate linear ordering.

A fundamental tool in our algorithm is to move from a basex to another base
by an exchange operationthat increases one component and decreases another
component by the same amount, that is,x := x+α(χu−χv). With x =∑i∈I λi yi ,
a convex combination of extreme bases, this can be realized by applying an exchange
operation on an extreme baseyi . An exchange amountβ on yi corresponds to an
exchange amountλiβ on x. The following lemma shows that interchanging two
consecutive elements in a linear ordering that generatesyi results in an exchange
operation onyi .

LEMMA 2.2. Suppose u immediately succeeds v in a linear ordering L that
generates an extreme base y∈ B( f ). Then the linear ordering L′ obtained from L
by interchanging u and v generates an extreme base y′ = y+ c̃(y, u, v)(χu − χv)
with

c̃(y, u, v) = f (L(u)\{v})− f (L(u))+ y(v). (2.3)

PROOF. It is obvious from the greedy algorithm thaty′ can differ fromy only
at u andv. Namely,y′ = y + β(χu − χv) for someβ. SinceL ′(v) = L(u), it
follows from (2.2) thaty′(v) = f (L(u)) − f (L(u)\{v}). Thus, we obtainβ =
f (L(u)\{v})− f (L(u))+ y(v).

The quantity ˜c(y, u, v) in Lemma 2.2 is called anexchange capacity. In general,
an exchange capacity ˜c(x, u, v) is defined for any basex ∈ B( f ) and any ordered
pair of distinctu, v ∈ V as the maximum amount of exchange operation that keeps
x in the base polyhedron. Hence, the exchange capacity ˜c(x, u, v) is expressed as

c̃(x, u, v) = min{ f (X)− x(X) | u ∈ X ⊆ V\{v}}. (2.4)

However, there is nothing special that makes this computation easier than minimiz-
ing f . Our algorithm uses only those exchange capacities that can be computed via
Lemma 2.2.

3. A Scaling Algorithm

In this section, we describe a combinatorial algorithm for minimizing an integer-
valued submodular functionf: 2V → Z with f (∅) = 0. We assume we have an
evaluation oracle for the function value off . Our algorithm is an augmenting path
algorithm, embedded in a scaling framework. A formal description of this algorithm
SFM appears in Figure 1.

3.1. THE SCALING FRAMEWORK. The algorithm consists of scaling phases with
a positive parameterδ. The algorithm starts with an arbitrary linear orderingL on
V and the extreme basex ∈ B( f ) generated byL. The initial value ofδ is given by
δ := ξ/n2 with ξ = min{|x−(V)|, x+(V)}. At the end of each scaling phase, the
algorithm cutsδ in half. The algorithm ends withδ < 1/n2.
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FIG. 1. A scaling algorithm for submodular function minimization. The algorithm finds a subset
of V that minimizes submodular functionf . It uses a directed graphG◦ = (V, A◦) where A◦ =
{(u, v) | u, v ∈ V, u 6= v, ϕ(u, v) = 0}.

To adapt the augmenting path approach to this scaling framework, we use a
complete directed graph onV with arc capacities that depend directly on our scaling
parameterδ. Letϕ: V×V → R be a flow in the complete directed graphG = (V, A)
with the vertex setV and the arc setA = V × V . Theboundary∂ϕ: V → R is
defined by

∂ϕ(u) =
∑
v∈V

ϕ(u, v)−
∑
v∈V

ϕ(v, u), ∀u ∈ V. (3.1)

That is,∂ϕ(u) is the net flow value emanating fromu. A flow ϕ is calledδ-feasibleif
it satisfies capacity constraints 0≤ ϕ(u, v) ≤ δ for everyu, v ∈ V . Our algorithm
maintainsϕ such that at least one ofϕ(u, v) andϕ(v, u) is equal to zero for any
u, v ∈ V .

The algorithm maintains a basex ∈ B( f ) as a convex combinationx =∑i∈I λi yi
of extreme basesyi ∈ B( f ). For each indexi ∈ I , the algorithm also maintains a
linear orderingLi that generatesyi . Instead of trying to maximizex−(V) directly,
the algorithm usesz = x + ∂ϕ and seeks to increasez−(V), thereby increasing
x−(V) via the δ-feasibility of ϕ. This z is a base in the base polyhedron of the
submodular functionfδ(X) = f (X)+ δ|X| · |V\X|.
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3.2. A SCALING PHASE. Eachδ-scaling phase maintains aδ-feasible flowϕ
and a subgraphG◦ = (V, A◦) with the arc setA◦ = {(u, v) | u, v ∈ V, u 6=
v, ϕ(u, v) = 0}. The δ-scaling phase aims at increasingz−(V) by sending flow
along directed paths inG◦ from S= {v | v ∈ V, z(v) ≤ −δ} to T = {v | v ∈ V,
z(v) ≥ δ}. Such a directed path is called aδ-augmenting path.

If there is noδ-augmenting path, letW denote the set of vertices currently reach-
able fromS in G◦. A triple (i, u, v) of i ∈ I , u ∈ W andv ∈ V\W is called
activeif u immediately succeedsv in Li . If there is an active (i, u, v), the algorithm
performs an appropriate exchange operation, and modifiesϕ so thatz= x+ ∂ϕ is
invariant. We refer to this procedure asDouble-Exchange(i, u, v). The detail of
Double-Exchange is described below. As a result ofDouble-Exchange(i, u, v),
either W remains unchanged or the vertexv and the set of vertices inV\W
reachable fromv by δ-capacity paths are added toW. The algorithm performs
Double-Exchange as long as it is applicable, until aδ-augmenting path is found.
Once aδ-augmenting pathP is found, the algorithm augments the flowϕ by δ
alongP by settingϕ(u, v) := δ−ϕ(v, u) andϕ(v, u) := 0 for each arc (u, v) in P.
This increasesz−(V) by δ sincez changes only at the initial and terminal vertices
of P. This is an extension of a technique developed in Fleischer et al. [2001] for
finding δ-augmenting paths for submodular flows.

A δ-scaling phase ends when there is neither aδ-augmenting path nor an active
triple. Then the algorithm cuts the value ofδ in half and goes to the next scaling
phase. To keep theδ-feasibility ofϕ, the algorithm halves the flowϕ for each arc.

The first step of the procedureDouble-Exchange(i, u, v) is to compute the
exchange capacity ˜c(yi , u, v). It then updatesx andϕ asx := x + α(χu − χv) and
ϕ(u, v) := ϕ(u, v) − α, so thatz = x + ∂ϕ remains unchanged. The amountα
of this exchange operation is determined by taking the minimum ofϕ(u, v) and
λi c̃(yi , u, v). Note thatϕ(u, v) is the maximum amount of feasible decrease of
flow on (u, v) and thatλi c̃(yi , u, v) is the maximum exchange possible to effect in
x =∑i λi yi by performing an exchange operation onyi and keeping all the other
extreme bases inI fixed.

The procedureDouble-Exchange(i, u, v) updatesyi := yi+c̃(yi , u, v)(χu−χv)
and λi := α/c̃(yi , u, v). It also updatesLi by interchangingu and v, which
maintainsyi as an extreme base generated byLi . Double-Exchange(i, u, v)
is calledsaturating if α = λi c̃(yi , u, v). Otherwise, it is callednonsaturating.
If Double-Exchange(i, u, v) is nonsaturating, the oldyi remains in the
convex representation ofx with coefficient λi − α/c̃(yi , u, v). Thus, if
Double-Exchange(i, u, v) is nonsaturating, then before updatingyi , it adds to
I a new indexk with yk := yi , λk := λi − α/c̃(yi , u, v), and Lk := Li .
Double-Exchange(i, u, v) is summarized in Figure 2.

After eachδ-augmentation, and at the end of theδ-scaling phase, the algorithm
applies a procedureReduce(x, I ) that computes an expression forx as a convex
combination of (at mostn) affinely independent extreme basesyi , chosen from
the currentyi ’s. This computation is a standard linear programming technique of
transforming a feasible solution into a basic feasible solution. If the set of extreme
points are not affinely independent, there is a set of coefficientsµi for i ∈ I that
is not identically zero and satisfies

∑
µi yi = 0 and

∑
µi = 0. Using Gaussian

elimination, we can start computing suchµi until a dependency is detected. At this
point, we eliminate the dependency by computingθ := min{λi /µi | µi > 0} and
updatingλi := λi − θµi for i ∈ I . At least onei ∈ I satisfiesλi = 0. Delete
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Double-Exchange(i, u, v):

c̃(yi , u, v)← f (Li (u)\{v})− f (Li (v))+ yi (v)
α← min{ϕ(u, v), λi c̃(yi , u, v)}
x← x + α(χu − χv)
ϕ(u, v)← ϕ(u, v)− α
If α < λi c̃(yi , u, v) then

k← a new index
I ← I ∪ {k}

λk ← λi − α/c̃(yi , u, v)
λi ← α/c̃(yi , u, v)
yk ← yi

Lk ← Li

yi ← yi + c̃(yi , u, v)(χu − χv)
UpdateLi by interchangingu andv.

FIG. 2. Algorithmic description of the procedureDouble-Exchange(i, u, v).

such i from I . We continue this procedure until we eventually obtain affine
independence.

This same step is also used in the submodular function minimization algorithms
of Cunningham [1985] and Schrijver [2000]. However, for the present algorithm,
we do not need this step to obtain a polynomial bound on the complexity. We include
this linear algebraic procedure because it significantly reduces the running time of
the algorithm. For an analysis of the algorithm withoutReduce, see Section 5.

3.3. CORRECTNESS. In the subsequent analysis, the end of a scaling phase refers
to the point immediately beforeδ is cut in half. The following lemma establishes a
relaxed strong duality, which plays a crucial role in the analysis of our algorithm.

LEMMA 3.1. At the end of theδ-scaling phase, z−(V) ≥ f (W)− nδ.

PROOF. At the end of theδ scaling phase, there are no active triples, which
implies for eachi ∈ I the first|W| vertices inLi must belong toW. Then it follows
from (2.2) thatyi (W) = f (W). Sincex =∑i∈I λi yi and

∑
i∈I λi = 1, we obtain

x(W) =∑i∈I λi yi (W) = f (W).
At the end of theδ scaling phase, the setW also satisfiesS⊆ W ⊆ V\T and

∂ϕ(W) ≥ 0. By the definitions ofSandT , we havez(v) < δ for everyv ∈ W and
z(v) > −δ for everyv ∈ V\W. Therefore, we havez−(V) = z−(W)+z−(V\W) ≥
z(W)− δ|W| − δ|V\W| = x(W)+ ∂ϕ(W)− nδ ≥ f (W)− nδ.

As an immediate consequence of Lemma 3.1, we obtain the following lemma,
which leads us to the correctness of the scaling algorithm.

LEMMA 3.2. At the end of theδ-scaling phase, x−(V) ≥ f (W)− n2δ.

PROOF. By Lemma 3.1, the setW satisfiesz−(V) ≥ f (W)−nδ. Since∂ϕ(v) ≤
(n−1)δ for eachv ∈ V , we havex−(V) ≥ z−(V)−n(n−1)δ ≥ f (W)−n2δ.

THEOREM 3.3. The algorithm obtains a minimizer of f at the end of theδ-
scaling phase withδ < 1/n2.
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PROOF. By Lemma 3.2, the outputW of the algorithm satisfiesx−(V) ≥
f (W) − n2δ > f (W) − 1. For anyY ⊆ V , the weak duality in Lemma 2.1
assertsx−(V) ≤ f (Y), which implies f (W) − 1 < f (Y). Hence, it follows from
the integrality of f thatW minimizes f .

3.4. COMPLEXITY. We now investigate the number of iterations in each scal-
ing phase.

LEMMA 3.4. The number of augmentations per scaling phase is O(n2).

PROOF. It follows from Lemma 3.1 that at the beginning of theδ-scaling phase
except for the first one,z−(V) is at leastf (X)− 2nδ for someX ⊆ V . Replacing
ϕ by ϕ/2 could decreasez(X) by at most|X| · |V\X|δ which is bounded above
by n2δ/4 for any X, and hence the decrease ofz−(V) is also bounded byn2δ/4.
Hence, f (X)− 2nδ− n2δ/4≤ z−(V). On the other hand, sincex(X) ≤ f (X) and
∂ϕ(X) ≤ δ|X| · |V\X|, we havez−(V) ≤ z(X) ≤ f (X) + n2δ/4 throughout the
δ-scaling phase. Since eachδ-augmentation increasesz−(V) by δ, the number of
δ-augmentations per phase is at most 2n+ n2/2, which isO(n2), for all phases after
the first one.

In the first phase, letx denote the initial extreme base. Thenz = x at the start
of the algorithm. Sincez−(V) ≤ f (∅) = 0 andz−(V) ≤ f (V) = x(V) must hold
throughout, possible increase ofz−(V) during the first scaling phase is bounded by
ξ = min{|x−(V)|, x+(V)}. Thus, the initial settingδ = ξ/n2 guarantees that the
number of augmentations in the first scaling phase isn2.

LEMMA 3.5. Betweenδ-augmentations,|I | grows by at most n− 1.

PROOF. A new index is added to I only during a nonsaturating
Double-Exchange. Since each nonsaturatingDouble-Exchange adds a new
element toW, this happens at mostn − 1 times before aδ-augmenting path
is found.

LEMMA 3.6. Algorithm SFM performs the procedureDouble-Exchange
O(n3) times betweenδ-augmentations.

PROOF. Once the algorithm appliesDouble-Exchange(i, u, v), the verticesu
andv are interchanged inLi , and the triple (i, u, v) never becomes active again
until the nextδ-augmentation or the end of the phase. By performing basis reduction
after each augmentation,|I |< 2n throughout the algorithm by Lemma 3.5. Hence,
the number of timesDouble-Exchange is applied is bounded by the number of
triples, which is at mostO(n3).

THEOREM 3.7. AlgorithmSFM is a polynomial-time algorithm that performs
O(n5 log M) function evaluations and arithmetic operations.

PROOF. The algorithm starts withδ = ξ/n2 and ends withδ < 1/n2. For the
initial extreme basex and X = {v | v ∈ V, x(v) > 0}, we haveξ ≤ x+(V) =
x(X) ≤ f (X) ≤ M . Thus,SFM consists ofO(log M) scaling phases. Each scaling
phase performsO(n2) augmentations by Lemma 3.4.

Betweenδ-augmentations, there areO(n3) calls of Double-Exchange by
Lemma 3.6. The procedureDouble-Exchange consists ofO(1) calls of the func-
tion evaluation oracle. Therefore, the algorithm calls the oracleO(n5 log M) times
in total.
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As a result ofDouble-Exchange(i, u, v), the vertexv and the set of vertices
in V\W reachable fromv by δ-capacity paths may be added toW. (This set may
be determined by standard graph search onG.) Thus, over the course of an aug-
mentation, updates toW take at mostn3 time. To find an active triple efficiently,
we maintain a pointer for each indexi ∈ I that points to an element ofW in an
active triple forLi . After aDouble-Exchange that does not increaseW, this takes
at most linear time to update. After aDouble-Exchange that increasesW, this
may need to be updated for alli ∈ I , and thus takes at mostn2 time. Thus, per
augmentation, this takesO(n3) time. After augmentingϕ on P, the endpoints ofP
may be removed fromSor T .

After each augmentation, we also update the expressionx =∑i∈I λi yi to recover
the affine independence ofyi ’s. The bottleneck in this procedure is the time spent
for computing the coefficientsµi , as described in Section 3.2. Since|I | < 2n by
Lemma 3.5, this takesO(n3) arithmetic operations. If performed correctly, the
encoding length of the numbers generated by Gaussian elimination is bounded by a
polynomial in the size of the input (which includes the maximum encoding length
of the function values) [Edmonds 1967]. In addition, since the resulting multipliers
λ = (λi | i ∈ I ) are a basic solution to the systemHλ = x where the columns
of H correspond to extreme basesyi , their size is also bounded by a polynomial
in the input size. Thus,SFM is a polynomial-time algorithm withO(n5 log M)
arithmetic steps.

The previous best known pseudopolynomial time bound isO(n6M log(nM))
due to Cunningham [1985]. Theorem 3.7 shows that our scaling algorithm is faster
than this even ifM is fixed as a constant.

In this section, we have shown a weakly polynomial-time algorithm for minimiz-
ing integer-valued submodular functions. The integrality of a submodular function
f guarantees that if we have a basex ∈ B( f ) and a subsetX of V such that
f (X)− x−(V) is less than one,X is a minimizer of f . Except for this, we have not
used the integrality off . It follows that for any real-valued submodular function
f : 2V → R, if we are given a positive lower boundε for the difference between
the second minimum and the minimum value off , the present algorithm works for
the submodular function (1/ε) f with an O(n5 log(M/ε)) bound on the number of
steps, whereM = max{| f (X)| | X ⊆ V}.

4. A Strongly Polynomial Algorithm

This section presents a strongly polynomial algorithm for minimizing a real-valued
submodular functionf: 2V → R. The main idea is to show via Lemma 4.1 below
that afterO(logn) scaling phases, the algorithm detects either a new element that
is contained in every minimizer off , a new element that is not contained in any
minimizer of f , or a new vertex pair (u, v) such thatv is in every minimizer of
f containingu. Since there areO(n2) such detections, afterO(n2 logn) scaling
phases, the algorithm finds a minimizer off .

LEMMA 4.1. At the end of theδ-scaling phase inSFM( f ), the following hold:

(a) If x(w) < −n2δ, then w is contained in every minimizer of f .
(b) If x(w) > n2δ, then w is not contained in any minimizer of f .
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PROOF. By Lemma 3.2,x−(V) ≥ f (W)−n2δ holds at the end of theδ-scaling
phase. For any minimizerX of f , we havef (W) ≥ f (X) ≥ x(X) ≥ x−(X). Thus,
x−(V) ≥ f (W) − n2δ ≥ x−(X) − n2δ. Therefore, ifx(w) < −n2δ, thenw ∈ X.
On the other hand,x−(X) ≥ x−(V) ≥ f (W) − n2δ ≥ x(X) − n2δ. Therefore, if
x(w) > n2δ, thenw /∈ X.

The strongly polynomial algorithm, denotedSPM( f ), maintains a subsetX ⊆ V
that is included in every minimizer off , a vertex setU = {u1, . . . ,u`} correspond-
ing to a partition{V1, . . . ,V`} of V\X into pairwise disjoint nonempty subsets, a
submodular functionf̂ defined on 2U , and a directed acyclic graphD = (U, F).
Each arc inF is an ordered pair (u,w) of verticesu andw in U such thatw is in
every minimizer of f̂ containingu. Foru ∈ U , let0(u) denote the corresponding
set of the partition ofV\X. For example,0(u j ) = Vj . ForY ⊆ U , we also denote
0(Y) = ∪u∈Y0(u). Throughout the algorithm, we keep a correspondence between
minimizers of f and f̂ so that any minimizer off is represented asX ∪ 0(W) for
some minimizerW of f̂ . Initially, the algorithm assignsU := V , F := ∅, f̂ := f ,
andX := ∅, which clearly satisfy the above properties.

Let R(u) denote the set of the vertices reachable fromu ∈ U in D. We denote
by f̂ u thecontractionof f̂ by R(u), that is, the submodular function on ground set
U\R(u) defined by

f̂ u(Y) = f̂ (Y ∪ R(u))− f̂ (R(u)), ∀Y ⊆ U\R(u). (4.1)

A linear ordering (u1, . . . ,u`) of U is calledconsistentwith D if (ui , u j ) ∈ F
implies that j < i . The extreme base generated by a consistent linear ordering is
also calledconsistent.

LEMMA 4.2. Any consistent extreme base y∈ B( f̂ ) satisfies y(u) ≤ f̂ (R(u))−
f̂ (R(u)\{u}) for each u∈ U.

PROOF. The consistent extreme basey satisfiesy(u) = f̂ (Y) − f̂ (Y\{u}) for
someY ⊇ R(u). The claim then follows from the submodularity off̂ .

The building block of the strongly polynomial algorithm is the subroutine
Fix( f̂ , D, η) which performsO(logn) scaling phases starting withδ = η, and
an extreme basey ∈ B( f̂ ) that is consistent withD for submodular functionf̂ .
The subroutineFix( f̂ , D, η) is invoked only if f̂ (U ) ≥ η/3 or there is a sub-
setY ⊆ U such that f̂ (Y) ≤ −η/3. Fix( f̂ , D, η) performs scaling phases until
δ < η/3n3. Then, if f̂ (U ) ≥ η/3, at least one elementw ∈ U satisfiesx(w) > n2δ
at the end of the last scaling phase. By Lemma 4.1 (b), such an elementw is not
contained in any minimizer of̂f . Otherwise,f̂ (Y) ≤ −η/3 and at least one element
w ∈ Y satisfiesx(w) < −n2δ at the end of the last scaling phase. By Lemma 4.1
(a), such an elementw is contained in every minimizer of̂f .

The choice ofη in each call toFix is determined so that (i) Lemma 4.1 may
be invoked for a new elementw after O(logn) phases, and (ii) the number of
augmentations in the first phase is not too large. This is accomplished by setting
η as in (4.2). We explain why (i) holds below, and why (ii) holds in the proof of
Theorem 4.3

η = max{ f̂ (R(u))− f̂ (R(u)\{u}) | u ∈ U }. (4.2)
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Lemma 4.2 implies thaty(v) ≤ η for any y ∈ B( f̂ ) consistent withD.
If η ≤ 0, then an extreme basey ∈ B( f̂ ) consistent withD satisfiesy(u) ≤ 0

for eachu ∈ U . In this case,y−(U ) = y(U ) = f̂ (U ), which implies thatU
minimizes f̂ by the weak duality in Lemma 2.1. Therefore, the algorithm returns
U as a minimizer off̂ .

If η > 0, then letu be an element that attains the maximum in the right-hand
side of (4.2). Then, sinceη = f̂ (R(u))− f̂ (R(u)\{u}) = f̂ (U )− f̂ (R(u)\{u})+
( f̂ (R(u)) − f̂ (U )), at least one of the three values,f̂ (U ), − f̂ (R(u)\{u}), and
f̂ (R(u))− f̂ (U ), is greater than or equal toη/3. Hence, we consider the following
three cases:

If f̂ (U ) ≥ η/3> 0, the algorithm appliesFix( f̂ , D, η) to find a new elementw
that is not in any minimizer of̂f . In this case, it suffices to minimize the function
f̂ among those subsets that do not contain any vertexv with w ∈ R(v). Thus, the
algorithm deletes{v | w ∈ R(v)} from U .

If f̂ (R(u)\{u}) ≤ −η/3 < 0, the algorithm appliesFix( f̂ , D, η) to find a new
elementw in every minimizer of f̂ . In this case, every minimizer of̂f includes
R(w). Thus, it suffices to minimize the submodular functionf̂ w, defined on the
smaller underlying setU\R(w) as in (4.1); so the algorithm setŝf := f̂ w.

Otherwise, (̂f u(U\R(u)) = f̂ (U ) − f̂ (R(u)) ≤ −η/3 < 0), the algorithm
appliesFix( f̂ u, Du, η) whereDu is defined asD restricted toU\R(u). In this case,
Fix( f̂ u, Du, η) finds an elementw ∈ U\R(u) that is contained in every minimizer
of f̂ u. Thus, the algorithm adds (u,w) to F . If this creates a cycle inD, then the arcs
of the cycle imply that either every element in the cycle is contained in a minimizer
of f̂ , or every element in the cycle is not contained in any minimizer. Thus, the
algorithm contracts the cycle to a single vertex and modifiesU and f̂ by regarding
the contracted vertex set as a single vertex.

This algorithm is summarized in Figure 3.

THEOREM 4.3. Algorithm SPM is a strongly polynomial algorithm that per-
forms O(n7 logn) function evaluations and arithmetic operations.

PROOF. Each time we call the procedureFix, the algorithm adds a new arc toD
or deletes a set of vertices. This can happen at mostO(n2) times. Each call toFix
takesO(logn) phases. By Lemma 3.4, each phase after the first phase hasO(n2)
augmentations.

To bound the number of augmentations in the first phase, recall that the choice
of η implies thaty(v) ≤ η for any extreme basey ∈ B( f̂ ) consistent withD. By
submodularity off̂ , any extreme basey ∈ B( f̂ u) consistent withDu satisfiesy(t) ≤
f̂ u(R(t)) − f̂ u(R(t)\{t}) ≤ f̂ (R(t)) − f̂ (R(t)\{t}) ≤ η for eacht ∈ U\R(u).
Thus, forFix( f̂ , D, η) or Fix( f̂ u, Du, η), we havey+(V) ≤ nη. Since the number
of augmentations in aδ-phase is bounded byy+(U )/δ, the number of augmentations
in the first phase of any call toFix is bounded byn.

Since the proof of Theorem 3.7 shows that the number of arithmetic operations
and function evaluations per augmentation isO(n3), this yields anO(n7 logn)
bound on the total number of steps.

When applied to rational-valued submodular functions,SPM works in the space
of polynomial size. In particular, as noted earlier, the encoding length of the numbers
generated in the Gaussian elimination is bounded by a polynomial in the input size
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FIG. 3. A strongly polynomial algorithm for submodular function minimization.

(including the maximum encoding length of the function values) [Edmonds 1967],
and so is the size of the resulting multipliersλ. Thus,SPM is a strongly polynomial
algorithm.

5. Removing Gaussian Elimination

The algorithms described in Sections 3 and 4 both employ Gaussian elimination to
get a representation ofx as a convex combination of a small number of extreme
bases. This step is, however, not necessary to obtain the polynomiality. We explain
here the effect of removing this step.

The size of the setI in the convex combination representation ofx increases by
at mostn− 1 per augmentation, due to Lemma 3.5. The number of augmentations
per scaling phase is not affected by the size ofI (see the proof of Lemma 3.4),
and hence remainsO(n2). Thus, the total number of bases introduced during the
algorithm is bounded byn times the number of augmentations. For the scaling
algorithmSFM( f ) described in Section 3, this isO(n3 log M).

The size of I does affect the work per augmentation, however. In particu-
lar, it affects the number of calls toDouble-Exchange during the search for
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an augmentation. In the proof of Lemma 3.6, it is explained that the number
of Double-Exchange operations before augmentation per extreme base inI
is at mostn2. Thus, the total work per augmentation in the algorithm without
Reduce is O(n5 log M). Thus, the number of arithmetic operations and function
evaluations used by this more combinatorial version ofSFM( f ) is bounded by
O(n7 log2 M).

The strongly polynomial algorithmSPM( f ) described in Section 4 does not
depend on reducing the size ofI for strong polynomiality. If this step is omitted,
the number of extreme bases inI may grow toO(n3 logn) in an iteration ofFix.
Since each call toFix starts with a single extreme base, the size ofI will remain
bounded throughoutSPM( f ) by O(n3 logn). This will increase the the work per
augmentation toO(n5 logn). Thus, an overall bound on the number of steps is
O(n9 log2 n).

In contrast, if the linear algebraic step were omitted in the strongly polynomial
algorithm described in Schrijver [2000], the size ofI could become exponential
in n.

6. Conclusion

This paper has presented a strongly polynomial algorithm for minimizing submod-
ular functions defined on Boolean lattices: all subsets of the ground setV . Several
related problems have been shown to require algorithms for minimizing submodu-
lar functions on restricted families of subsets [Goemans and Ramakrishnan 1995;
Grötschel et al. 1988]. These problems have combinatorial solutions modulo an or-
acle for submodular function minimization on distributive lattices. Our algorithms
can be extended to minimize submodular functions defined on distributive lattices.

Consider a submodular functionf: D → R defined on a distributive latticeD
represented by a posetP onV . Then, the associated base polyhedron is unbounded
in general.

An easy way to minimize such a functionf is to consider the reduction off by
a sufficiently large vector. As described in [Fujishige 1991, p. 56], we can com-
pute an upper-bound̂M on | f (X)| amongX ∈D. Let f̂ be the rank function of
the reduction by a vector with each component being equal toM̂ . The submod-
ular function f̂ is defined on 2V and the set of minimizers of̂f coincides with
that of f . Thus, we may apply our algorithms. However, each evaluation of the
function value of f̂ requiresO(n2) elementary operations in addition to a single
call for the evaluation off . Schrijver [2000] describes a similar method to solve
this problem.

Alternatively, we can slightly extend the algorithms in Sections 3 and 4 by keeping
the basex ∈ B( f ) as a convex combination of extreme basesyi ’s plus a vector in
the characteristic cone of B(f ). The latter can be represented as a boundary of a
nonnegative flow in the Hasse diagram ofP. This extension enables us to minimize
f in O(n5 min{lognM̂, n2 logn}) time, whereM̂ is an upper bound on| f (X)|
amongX ∈ D.

Submodular functions defined on modular lattices naturally arise in linear alge-
bra. Minimization of such functions has a significant application to canonical forms
of partitioned matrices [Ito et al. 1994; Iwata and Murota 1995]. It remains an inter-
esting open problem to develop an efficient algorithm for minimizing submodular
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functions on modular lattices, even for those specific functions that arise from
partitioned matrices.
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