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1. Introduction

Let V be a finite nonempty set of cardinality A function f defined on all the
subsets oV is calledsubmodulaif it satisfies

f(X)+ f(Y)= F(XUY)+ f(XNY), V¥XYCV.

This paper presents a combinatorial polynomial-time algorithm for finding a min-
imizer of a general submodular function, provided that an oracle for evaluating
the function value is available. Throughout this paper, we assume without loss of
generality thatf (#) = O by subtracting the scaldr(@) from every function value.

Submodularity is a discrete analog of convexity [Frank 1982; Fujishige 1984b;
Lovasz 1983], and submodular functions arise naturally in various fields, including
combinatorial optimization, computational biology, game theory, scheduling, prob-
ability, and information theory. Examples include the matroid rank function, the
cut capacity function, and the entropy function. Problems in diverse areas such as
dynamic flows [Hoppe and Tardos 2000], facility location [Tamir 1993], and multi-
terminal source coding [Fujishige 1978; Han 1979] rely on algorithms for general
submodular function minimization. Submodular function minimization is also used
to solve submodular flow problems [Cunningham and Frank 1985; Edmonds and
Karp 1972; Fujishige and Iwata 2000] which generalize network flow and matroid
optimization problems, and model several graph augmentation and connectivity
problems [Edmonds and Giles 1977; Frank and Tardos 1988; 1989]. For gen-
eral background on submodular functions, see Frank and Tardos [1998], Fujishige
[1991], and Lowasz [1983].

There are two natural polyhedra RV associated with a submodular function
f. Thesubmodular polyhedroR(f) and thebase polyhedroB( f) are defined by

P(f) = {x | x e RY, ¥X C V : x(X) < f(X)},
B(f) = {x1xeP(f), x(V) = f(V)},

wherex(X) = ), .x X(v). Linear optimization problems over these polyhedra can
be solved efficiently by the greedy algorithm [Edmonds 1970Q].

The first polynomial-time algorithm for submodular function minimization is
due to Gotschel et al. [1981]. They showed, in general, the polynomial-time
equivalence of separation and optimization for polyhedra via the ellipsoid method.
The separation problem of deciding whetBes P(f#), for the submodular func-
tion f# defined by subtracting scalar< 0 from f (X) for every nonemptX C V,
is equivalent to determining if the minimum of the submodular funcfiosat least
w. This problem can be solved using the ellipsoid algorithm in conjunction with the
greedy algorithm that solves the optimization problem ovdrP(Since the maxi-
mum valuew* of u with 0 € P(f #) equals the minimum value df, embedding the
ellipsoid algorithm in a binary search for* yields a polynomial-time algorithm
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for submodular function minimization. However, the ellipsoid method is far from
being efficient in practice and is not combinatorial.

In this paper, we present a combinatorial polynomial-time algorithm for sub-
modular function minimization. Our algorithm uses an augmenting path approach
with reference to a convex combination of extreme points of the associated base
polyhedron. Such an approach was first introduced by Cunningham [1984] for
minimizing submodular functions that arise from the separation problem for ma-
troid polyhedra. This was adapted for general submodular function minimization
by Bixby et al. [1985] and improved by Cunningham [1985] to obtain the first com-
binatorial, pseudopolynomial-time algorithm. More recently, Narayanan [1995]
introduced a rounding technique that improves Cunningham’s algorithm for ma-
troid polyhedra. Based on a minimum-norm base characterization of minimizers
[Fujishige 1980; 1984a], Sohoni [1992] devised another pseudopolynomial-time
algorithm. For a closely related problem of finding a nonempty proper subset that
minimizes a symmetric submodular functibnQueyranne [1998] has described a
combinatorial strongly polynomial algorithm. (A symmetric set functfosatisfies
f(X) = f(V\X) forall X C V.) Queyranne’s algorithm extends the undirected
minimum-cut algorithm of Nagamochi and Ibaraki [1992].

A fundamental tool in the above algorithms for general submodular function
minimization [Bixby et al. 1985; Cunningham 1984; 1985; Narayanan 1995] is to
move from one extreme point of the base polyhedron to an adjacent extreme point
via an exchange operation that increases one coordinate and decreases another
coordinate by the same quantity. This quantity is called the exchange capacity.
These previous methods maintain a directed graph with a vertex set given by the
underlying set of the submodular function, and with an arc set that represents a
set of possible exchange operations. They progress by iteratively performing a
sequence of exchange operations along an augmenting path. These algorithms are
not known to be polynomial since the best-known lower bound on the amount
of each augmentation is too small. The amount of augmentation is determined
by exchange capacities multiplied by the convex combination coefficients. These
coefficients may be as small as the reciprocal of the maximum absolute value of
the submodular function.

To make a pseudopolynomial-time algorithm run in polynomial time, Edmonds
and Karp [1972] introduced the scaling technique in the design of the first
polynomial-time minimum cost flow algorithm. Since this initial success, there
have been many polynomial-time scaling algorithms designed for various combi-
natorial optimization problems. However, a straightforward attempt to apply the
scaling technique does not work for submodular function minimization. This is
mainly because rounding a submodular function may violate the submodularity.
More specifically, the set functiof’ defined byf’(X) = | f (X)] is not necessar-
ily submodular even iff is a submodular function.

To overcome this difficulty, we employ a scaling framework that uses the com-
plete directed graph on the underlying set, letting the capacity of this arc set depend
directly on the scaling paramet&rThe complete directed graph serves as a relax-
ation of the submodular functioh to another submodular functiofy defined by
fs(X) = f(X) 4+ §|X] - |[V\X|. Note that the second terér| X| - [V \ X] is the cut
function of this additional graph, and hence submodular.

The relaxationfs has a natural interpretation in the setting of network flows. In
their cut-canceling algorithm for minimum cost flows, Ervolina and McCormick
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[1993] relax the capacity of each flow arc by the scaling paramiefar submodular
function minimization, the “graph” is the set of possible exchange arcs, which is
really the complete directed graph ¥n

The use of this additional graph was first introduced by Iwata [1997] as the first
capacity-scaling algorithm for submodular flow. Since that paper was published,
the submodular flow algorithms of lwata et al. [1999] and Fleischer et al. [2001]
have developed the techniques further. In particular, incorporating ideas from Ilwata
et al. [1999], the algorithm in Fleischer et al. [2001] introduces a method to avoid
exchange operations on an augmenting path. This is done by carefully performing
exchange operations during the search for an augmenting path of sufficient residual
capacity. Our work in the present paper employs this technique to develop a capacity
scaling, augmenting path algorithm for submodular function minimization.

The resulting algorithm use®(n®log M) arithmetic steps and function evalu-
ations, whereM = max{| f (X)| | X € V}. Even under the assumption thdtis
bounded by a constant, our scaling algorithm is faster than the best previous combi-
natorial, pseudopolynomial-time algorithm due to Cunningham [1985], which uses
O(n®M log (nM)) arithmetic steps and function evaluations.

We then modify our scaling algorithm to run in strongly polynomial time. A
strongly polynomial algorithm for submodular function minimization performs a
number of steps bounded by a polynomial in the size of the underlying set, inde-
pendent ofM. Grétschel et al. [1988] described the first such algorithm using the
ellipsoid method. To make a polynomial-time algorithm run in strongly polynomial
time, Frank and Tardos [1987] developed a generic preprocessing technique that is
applicable to a fairly wide class of combinatorial optimization problems including
submodular flow (assuming an oracle for computing exchange capacities) and test-
ing membership in matroid polyhedra. However, this framework does not readily
apply to our scaling algorithm for submodular function minimization. Instead, we
establish a proximity lemma, and use it to devise a combinatorial algorithm that re-
peatedly detects either a new element contained in every minimizer, a new element
not contained in any minimizer, or a new ordered painM) € V such that any
minimizer containingu also containy. The resulting algorithm use®(n’ logn)
arithmetic steps and function evaluations. Our approach is based on the general
technique originated by Tardos [1985] in the design of the first strongly polynomial
minimum cost flow algorithm.

Independently, Schrijver [2000] has also developed a combinatorial strongly
polynomial algorithm for general submodular function minimization based on Cun-
ningham’s approach. Instead of designing an algorithm that uses provably large
augmentations as we do here, Schrijver’'s complexity analysis depends on an algo-
rithmic framework that uses paths whose lengths are provably nondecreasing. His
algorithm can be shown to ug@(n®) function evaluations an®(n®) arithmetic
steps. A modification of this algorithm improves both of these quantities by a linear
factor [Fleischer and Iwata 2000]. Both Schrijver’s algorithm and ours use Gaus-
sian elimination to maintain the representation of a vector ih)E(s the convex
combination of a small number of extreme points. However, we do not require this
step to establish the polynomial time complexity of our algorithm.

Schrijver [2000] poses an open problem to design a strongly polynomial algo-
rithm for submodular function minimization that consists only of additions, sub-
tractions, comparisons, and oracle calls. The symmetric submodular function min-
imization algorithm of Queyranne [1998] is “fully combinatorial” in this sense.
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Iwata [2001] has very recently answered this question by describing a fully combi-
natorial implementation of the strongly polynomial algorithm in the present paper.

This paper is organized as follows: Section 2 provides background on submod-
ular functions. Section 3 presents our scaling algorithm for submodular function
minimization, and Section 4 gives a strongly polynomial algorithm. In Section 5,
we discuss the variants of our algorithms without Gaussian elimination. Finally, we
conclude with extensions in Section 6.

2. Preliminaries

We denote by andR the set of integers and the set of reals, respectively. For any
vectorx € RV and any subseX C V, the expressiox(X) denotesy ",y X(v).
For any vectorx € RY, we denote byx* andx~ the vectors irRY defined by
xt(v) = max0, x(v)} andx~(v) = min{0, x(v)} for v € V. For eachu € V, let
xu denote the vector iRV such thaty,(u) = 1 andyy(v) = 0 forv € V\{u}.

A vector in the base polyhedron B) is called abase and an extreme point of
B(f) anextreme basdt is easy to see that for any base= B(f) and any subset
Y € V we havex— (V) < x(Y) < f(Y). The following fundamental lemma shows
that these inequalities are in fact tight for appropriately chosandY. Although
the lemma easily follows from a theorem of Edmonds [1970] on the vector reduction
of polymatroids, we provide a direct proof for completeness.

LEMMA 2.1. For a submodular function:f2¥ — R, we have
maxXx— (V) | x € B(f)} = min{f(X) | X C V}. (2.2)

If f is integer-valued, then the maximizer x can be chosen from among integral
bases.

PROOF. Let x be a maximizer in the left-hand side. For asyt € V with
X(s) < 0 andx(t) > 0, there exists a subs&t; such thats € Xg; € V\{t} and
X(Xst) = f(Xsp). Then it follows from the submodularity of that

x= U N %

s:x(s)<0  t:x(t)>0
satisfiesx(X) = f(X). Sincex(u) < 0 for everyu € X andx(v) > O for every
v € V\X, we havex (V) = x(X) = f(X), which establishes the min-max
relation. The integrality assertion follows from the same argument starting with an
integral base that maximizex~ (V) over all integral bases.[]

It is not completely obvious that Lemma 2.1 provides a good characterization
of a minimizer of f. In fact, provingx € B(f) by the definition would require
exponential number of function evaluationsy s an extreme base, however, there
is a compact proof thagy € B(f) resulting from the greedy algorithm described
below. However, the maximizer of (2.1) may not be an extreme base. To handle
this, Cunningham [1984; 1985] suggested maintaining akasB( f) as a convex
combination of extreme bases, thus yielding a compact prooktkaB( f ) for any
basex generated by his algorithm.

LetL = (vy,...,Vn) bealinearordering df . Foranyj € {1, ..., n}, we define
L(vj) = {va, ..., V;}. The greedy algorithm of Edmonds [1970] and Shapley [1971]
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computes an extreme bage B(f) associated with. by
y(v) = f(L(V)) = F(LW\{v}), VveV. (2.2)

Thus, the linear ordering provides a certificate thatis an extreme base. Con-
versely, any extreme base can be generated by applying the greedy algorithm to an
appropriate linear ordering.

A fundamental tool in our algorithm is to move from a bast another base
by anexchange operatiothat increases one component and decreases another
component by the same amount, thakis= X +a(xu — xv). Withx =3 i, Ai Vi,
aconvex combination of extreme bases, this can be realized by applying an exchange
operation on an extreme bage An exchange amourt ony; corresponds to an
exchange amourit; 8 on x. The following lemma shows that interchanging two
consecutive elements in a linear ordering that genesatessults in an exchange
operation ory;.

LEMMA 2.2. Suppose u immediately succeeds v in a linear ordering L that
generates an extreme base\B( f). Then the linear ordering Lobtained from L
by interchanging u and v generates an extreme base y+ ¢(y, u, V)(xu — xv)
with

C(y. u.v) = f(LU\{v}) — f(L(W) + y(v). (2.3)

PROOF. It is obvious from the greedy algorithm thgtcan differ fromy only
atu andv. Namely,y = y + B(xu — xv) for someg. SincelL’(v) = L(u), it
follows from (2.2) thaty’'(v) = f(L(u)) — f(L(u)\{v}). Thus, we obtairg =
FL\{V) — f(LW) +y(v). O

The quantityc{y, u, v) in Lemma 2.2 is called amxchange capacityn general,
an exchange capacitfX, u, v) is defined for any base € B(f) and any ordered
pair of distinctu, v € V as the maximum amount of exchange operation that keeps
X in the base polyhedron. Hence, the exchange cape@ity; v) is expressed as

C(x, u,v) = min{f(X) — xX(X) |ue X € V\{v}}. (2.4)

However, there is nothing special that makes this computation easier than minimiz-
ing f. Our algorithm uses only those exchange capacities that can be computed via
Lemma 2.2.

3. A Scaling Algorithm

In this section, we describe a combinatorial algorithm for minimizing an integer-
valued submodular functiof: 2¥ — Z with f(¥) = 0. We assume we have an
evaluation oracle for the function value &f Our algorithm is an augmenting path
algorithm, embedded in a scaling framework. A formal description of this algorithm
SFM appears in Figure 1.

3.1. THE SCALING FRAMEWORK. The algorithm consists of scaling phases with
a positive parametér. The algorithm starts with an arbitrary linear orderingn
V and the extreme basec B(f) generated by . The initial value o® is given by
§ 1= £/n?with & = min{|x~(V)|, x*(V)}. At the end of each scaling phase, the
algorithm cutss in half. The algorithm ends with < 1/n.
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SFM(f):

Initialization:
L « a linear ordering on V'
z « an extreme base in B(f) generated by L
¢ « min{|z=(V)],z*(V)}/n?
I—{k},ys—z, g —1, Ly~ L
¢« 0,
While § > 1/n? do [ Scaling phase ]
S — {v | a(v) + Op(v) < —6}
T — {v | z(v) + 0p(v) > 6}
W « the set of vertices reachable from S in G°
While W N T s 0 or there is an active triple do
While WNT = @ and there is an active triple do
Apply Double-Exchange to an active triple (2, u,v).
Update W.
IfWNT # () then [ There is a §-augmenting path. ]
Augment flow ¢ along a §-augmenting path P.
Update G°, S, T, W.
Apply Reduce(z, I).
§—6/2
/2
Return W.
End.

Fic. 1. A scaling algorithm for submodular function minimization. The algorithm finds a subset
of V that minimizes submodular functioh. It uses a directed grapB° = (V, A°) where A° =
{(u,v)lu,veV, uz#v, p(u,v) =0}

To adapt the augmenting path approach to this scaling framework, we use a
complete directed graph dhwith arc capacities that depend directly on our scaling
parametes. Lety: V xV — Rbeaflowinthe complete directed graph= (V, A)
with the vertex seV and the arc seA = V x V. Theboundarydg: V — R is
defined by

dp(U) =D oU,v) =D ¢(V.u), VueV. (3.1)

veV veV

Thatis,d¢(u) is the net flow value emanating framA flow ¢ is calleds-feasiblef
it satisfies capacity constraintsO¢(u, v) < § for everyu, v € V. Our algorithm
maintainsy such that at least one @f{u, v) and¢(v, u) is equal to zero for any
uvev.

The algorithm maintains a bage= B( f)asaconvexcombination= ) ;_, Ai Vi
of extreme baseyg € B(f). For each index € I, the algorithm also maintains a
linear orderingL; that generatey . Instead of trying to maximize~ (V) directly,
the algorithm useg = x + d¢ and seeks to increage (V), thereby increasing
x~ (V) via the §-feasibility of ¢. This z is a base in the base polyhedron of the
submodular functiorfs(X) = f(X) + §| X[ - [V\ X].
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3.2. A XALING PHASE. Eaché-scaling phase maintainséafeasible flowg
and a subgraple® = (V, A°) with the arc setA° = {(u,v) |u,v € V, u #

Vv, ¢(u,v) = 0}. Thed-scaling phase aims at increasimg(V) by sending flow
along directed paths iG° fromS={v|v eV, z(v) < -§}toT ={v|v eV,
z(v) > §8}. Such a directed path is called-@ugmenting path

If there is noS-augmenting path, &/ denote the set of vertices currently reach-
able fromSin G°. A triple (i,u,v) ofi € I, u € W andv € V\W is called
activeif uimmediately succeedsin L;. If there is an activei (u, v), the algorithm
performs an appropriate exchange operation, and mogifsesthatz = x + d¢ is
invariant. We refer to this procedure Bsuble-Exchange(i, u, v). The detail of
Double-Exchange is described below. As a result Dbuble-Exchange(i, u, v),
either W remains unchanged or the vertexand the set of vertices iv\W
reachable fronv by §-capacity paths are added Y. The algorithm performs
Double-Exchange as long as it is applicable, untillaaugmenting path is found.
Once as-augmenting pathP is found, the algorithm augments the flgwby §
alongP by settingp(u, v) := 8 — ¢(v, u) andg(v, u) := 0 for each arcy, v) in P.
This increaseg (V) by é sincez changes only at the initial and terminal vertices
of P. This is an extension of a technique developed in Fleischer et al. [2001] for
finding §-augmenting paths for submodular flows.

A §-scaling phase ends when there is neith&aaigmenting path nor an active
triple. Then the algorithm cuts the value &fn half and goes to the next scaling
phase. To keep thfeasibility of ¢, the algorithm halves the flogw for each arc.

The first step of the proceduf@ouble-Exchange(i, u, v) is to compute the
exchange capacity(y;, u, v). It then updates andy asx = X + a(xu — xv) and
(U, V) := ¢(u,v) — «, so thatz = x + d¢ remains unchanged. The amount
of this exchange operation is determined by taking the minimum(ofv) and
AiC(Yi, u, v). Note thate(u, v) is the maximum amount of feasible decrease of
flow on (u, v) and that; €(y;, u, v) is the maximum exchange possible to effect in
X = > Ay by performing an exchange operationgrand keeping all the other
extreme bases ihfixed.

The procedur®ouble-Exchange(i, u, v) updatesy; := v +C(Vi, u, V)(xu—xv)
and A = «a/C(y;, u,v). It also updated.; by interchangingu and v, which
maintainsy; as an extreme base generated lhy Double-Exchange(i, u, v)
is calledsaturatingif « = A;C(y;, u, v). Otherwise, it is callechonsaturating
If Double-Exchange(i, u,v) is nonsaturating, the oldy; remains in the
convex representation ok with coefficient A; — «/C(yi, u,v). Thus, if
Double-Exchange(i, u, v) is nonsaturating, then before updatigg it adds to
| a new indexk with yx = Vi, Ax = Aj — a/C(yi,u,Vv), and Ly = L;.
Double-Exchange(i, u, v) is summarized in Figure 2.

After eachs-augmentation, and at the end of #hecaling phase, the algorithm
applies a procedurReduce(x, |) that computes an expression foas a convex
combination of (at mosh) affinely independent extreme basgs chosen from
the currenty;’s. This computation is a standard linear programming technique of
transforming a feasible solution into a basic feasible solution. If the set of extreme
points are not affinely independent, there is a set of coefficigntsr i € | that
is not identically zero and satisfigs uiyi = 0and)_ ;i = 0. Using Gaussian
elimination, we can start computing sughuntil a dependency is detected. At this
point, we eliminate the dependency by computing= min{A; /ui | ui > 0} and
updatingi; := Aj — Ou; fori € I. Atleast oné < | satisfiesh; = 0. Delete
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Double-Exchange(i, u, v):

Elyi, u,v) < FLi(u\{vh — F(Li(W) +¥viV)
a < minfe(u, v), 2 &(yi, u, v)}
X < X+ alxu— xv)
o(u, V) < (U, V) —a
If o < AiC(yi, u, V) then
k < anew index
| < 1 Uk}
Ak < Aj —a/C(Vi, U, V)
Ai < a/C(yi, u,Vv)
Y < Vi
Lk < L;j
Vi < Y +CL U V) — xv)
UpdateL; by interchangingi andv.

Fic. 2. Algorithmic description of the proceduBmuble-Exchange(i, u, v).

suchi from |. We continue this procedure until we eventually obtain affine
independence.

This same step is also used in the submodular function minimization algorithms
of Cunningham [1985] and Schrijver [2000]. However, for the present algorithm,
we do not need this step to obtain a polynomial bound on the complexity. We include
this linear algebraic procedure because it significantly reduces the running time of
the algorithm. For an analysis of the algorithm with®&duce, see Section 5.

3.3. MRRECTNESS Inthe subsequentanalysis, the end of a scaling phase refers
to the point immediately beforkis cut in half. The following lemma establishes a
relaxed strong duality, which plays a crucial role in the analysis of our algorithm.

LEmmA 3.1. Atthe end of thé-scaling phase, z(V) > f(W) — né.

PrROOF. At the end of the scaling phase, there are no active triples, which
implies for each < | the first|W| vertices inL; must belong t&W. Then it follows
from (2.2) thaty; (W) = f(W). Sincex = ) ;, Aiyi and) ;, Ai = 1, we obtain
X(W) = Y55, 2 i (W) = F(W).

At the end of theS scaling phase, the s also satisfieS € W C V\T and
d¢(W) > 0. By the definitions o5 andT, we havez(v) < § for everyv € W and
z(v) > —d foreveryv € V\W. Therefore, we have (V) = z7(W)+z (V\W) >
Z(W) — 8|W| — §|V\W| = X(W) + dp(W) —ns > f(W) —ns. O

As an immediate consequence of Lemma 3.1, we obtain the following lemma,
which leads us to the correctness of the scaling algorithm.

LEMMA 3.2. Atthe end of thé-scaling phase, X(V) > f (W) —n?s.

PROOF BylLemma 3.1, the s&V satisfiez™ (V) > f(W)—né. Sincedp(v) <
(n—1)s for eachv € V, we havex— (V) > z7 (V) —n(n—1)§ > f(W)—n?s5. O

THEOREM 3.3. The algorithm obtains a minimizer of f at the end of the
scaling phase witld < 1/n?.



770 S. IWATA ET AL.

PrROOF By Lemma 3.2, the outputV of the algorithm satisfiex= (V) >
f(W) —n? > f(W) — 1. For anyY C V, the weak duality in Lemma 2.1
assertx— (V) < f(Y), which impliesf (W) — 1 < f(Y). Hence, it follows from
the integrality of f thatW minimizesf. O

3.4. @MPLEXITY. We now investigate the number of iterations in each scal-
ing phase.

LEMMA 3.4. The number of augmentations per scaling phase([is*D

PrOOF It follows from Lemma 3.1 that at the beginning of hscaling phase
except for the first onegz= (V) is at leastf (X) — 2né for someX C V. Replacing
¢ by ¢/2 could decreasg(X) by at most| X| - [V\X|é which is bounded above
by n?8/4 for any X, and hence the decreasezf(V) is also bounded by?s/4.
Hence,f (X) — 2n8 —n?5/4 < z~(V). On the other hand, sincgX) < f(X) and
dp(X) < 8|X| - [V\X|, we havez™ (V) < z(X) < f(X) + n?§/4 throughout the
§-scaling phase. Since eagfaugmentation increases (V) by §, the number of
s-augmentations per phase is at mast2n?/2, which isO(n?), for all phases after
the first one.

In the first phase, let denote the initial extreme base. Thes- x at the start
of the algorithm. Since— (V) < f(@¥) = 0 andz (V) < f(V) = x(V) must hold
throughout, possible increaseof(V) during the first scaling phase is bounded by
£ = min{|x~(V)|, x*(V)}. Thus, the initial setting = £/n? guarantees that the
number of augmentations in the first scaling phas#.is [J]

LEMMA 3.5. Betweers-augmentations,l | grows by at most A 1.

PROOF A new index is added tol only during a nonsaturating
Double-Exchange. Since each nonsaturatirigouble-Exchange adds a new
element toW, this happens at most — 1 times before a&-augmenting path
is found. O

LEMMA 3.6. Algorithm SFM performs the procedurdouble-Exchange
O(n3) times betwees-augmentations.

PROOF Once the algorithm applid3ouble-Exchange(i, u, v), the verticesu
andv are interchanged ih;, and the triplei(, u, v) never becomes active again
until the nexé-augmentation or the end of the phase. By performing basis reduction
after each augmentatiof,| < 2n throughout the algorithm by Lemma 3.5. Hence,
the number of time®ouble-Exchange is applied is bounded by the number of
triples, which is at mosD(n?®). O

THEOREM 3.7. Algorithm SFM is a polynomial-time algorithm that performs
O(n® log M) function evaluations and arithmetic operations.

PROOF. The algorithm starts with = £/n? and ends witld < 1/n?. For the
initial extreme basex and X = {v | v € V, x(v) > 0}, we havet < x*(V) =
xX(X) < f(X) < M. Thus,SFM consists ofO(log M) scaling phases. Each scaling
phase perform®(n?) augmentations by Lemma 3.4.

Between s-augmentations, there a®(n®) calls of Double-Exchange by
Lemma 3.6. The proceduigouble-Exchange consists 0fO(1) calls of the func-
tion evaluation oracle. Therefore, the algorithm calls the or@¢l®’ log M) times
in total.
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As a result ofDouble-Exchange(i, u, v), the vertexv and the set of vertices
in V\W reachable fronv by §-capacity paths may be addedwé (This set may
be determined by standard graph searclGonThus, over the course of an aug-
mentation, updates @/ take at mosh?® time. To find an active triple efficiently,
we maintain a pointer for each indéxe | that points to an element &¥ in an
active triple forL;. After aDouble-Exchange that does not incread#, this takes
at most linear time to update. After@ouble-Exchange that increase$V, this
may need to be updated for alle 1, and thus takes at most time. Thus, per
augmentation, this take3(n®) time. After augmenting on P, the endpoints oP
may be removed fronsor T.

After each augmentation, we also update the expressier ; _, A;y; torecover
the affine independence gf's. The bottleneck in this procedure is the time spent
for computing the coefficientg;, as described in Section 3.2. Sind¢ < 2n by
Lemma 3.5, this take®(n?) arithmetic operations. If performed correctly, the
encoding length of the numbers generated by Gaussian elimination is bounded by a
polynomial in the size of the input (which includes the maximum encoding length
of the function values) [Edmonds 1967]. In addition, since the resulting multipliers
A = (A |i €l)are abasic solution to the systdii = x where the columns
of H correspond to extreme basgs their size is also bounded by a polynomial
in the input size. ThusSFM is a polynomial-time algorithm witfO(n° log M)
arithmetic steps.

The previous best known pseudopolynomial time boun®§s®M log (nM))
due to Cunningham [1985]. Theorem 3.7 shows that our scaling algorithm is faster
than this even iM is fixed as a constant.

In this section, we have shown a weakly polynomial-time algorithm for minimiz-
ing integer-valued submodular functions. The integrality of a submodular function
f guarantees that if we have a base=s B(f) and a subseX of V such that
f(X) — x~ (V) is less than oneX is a minimizer of f . Except for this, we have not
used the integrality off . It follows that for any real-valued submodular function
f: 2¥ — R, if we are given a positive lower bourdfor the difference between
the second minimum and the minimum valuefothe present algorithm works for
the submodular function (&) f with an O(n°log(M/¢)) bound on the number of
steps, wherdl = max{| f(X)| | X € V}.

4. A Strongly Polynomial Algorithm

This section presents a strongly polynomial algorithm for minimizing a real-valued
submodular functiorf: 2¥ — R. The main idea is to show via Lemma 4.1 below
that afterO(log n) scaling phases, the algorithm detects either a new element that
is contained in every minimizer of, a new element that is not contained in any
minimizer of f, or a new vertex pairy, v) such thatv is in every minimizer of

f containingu. Since there ar®©(n?) such detections, afted(n’logn) scaling
phases, the algorithm finds a minimizer fof

LEMMA 4.1. Atthe end of thé-scaling phase itsFM( f), the following hold:

(@) If x(w) < —n?8, then w is contained in every minimizer of f.
(b) If x(w) > n?8, then w is not contained in any minimizer of f.
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PrROOF. ByLemma 3.2x~(V) > f(W)—n2s holds at the end of thiscaling
phase. For any minimize£ of f, we havef (W) > f(X) > x(X) > x7(X). Thus,
x~(V) > f(W) —n?s > x~(X) — n?. Therefore, ifx(w) < —n?s, thenw e X.
On the other hand—(X) > x~(V) > f(W) — n?§ > x(X) — n?5. Therefore, if
x(w) > n?s, thenw ¢ X. [

The strongly polynomial algorithm, denot8&@M( f), maintains a subset C V
thatis included in every minimizer df, a vertex set) = {us, ..., u,} correspond-
ing to a partition{Vy, ..., V,} of V\ X into pairwise disjoint nonempty subsets, a
submodular functiorf defined on 2, and a directed acyclic gragh = (U, F).
Each arc inF is an ordered painu, w) of verticesu andw in U such thaw is in
every minimizer off containingu. Foru € U, letT"(u) denote the corresponding
set of the partition o/ \ X. For example]"(uj) = V;. ForY € U, we also denote
I'(Y) = UyeyI'(u). Throughout the algorithm, we keep a correspondence between
minimizers of f and f so that any minimizer of is represented as U I"(W) for
some minimizeiW of f. Initially, the algorithm assigns :=V,F :=¢, f ;= f,
and X := @, which clearly satisfy the above properties.

Let R(u) denote the set of the vertices reachable frora U in D. We denote
by f, thecontractionof f by R(u), that is, the submodular function on ground set
U\R(u) defined by

fu(Y) = f(YURU)) — f(RU), VY CU\RU). (4.1)

A linear ordering (4, ..., uy) of U is calledconsistentvith D if (uj, uj) € F
implies thatj < i. The extreme base generated by a consistent linear ordering is
also callecconsistent

_LEMMA 4.2. Any consistent extreme baseB( ) satisfies yu) < f(R(u))—
f(R(u)\{u}) for each ue U.

PrOOF. The consistent extreme bageatisfiesy(u) = f(Y) — f(Y\{u}) for
someY 2 R(u). The claim then follows from the submodularity 6f [

The building block of the strongly polynomial algorithm is the subroutine
Fix(f, D, ) which performsO(logn) scaling phases starting with = », and
an extreme basg € B(f) that is consistent witD for submodular functiorf .

The subroutineFix(f, D, n) is invoked only if f(U) > n/3 or there is a sub-
setY € U such thatf(Y) < —n/3.Fix(f, D, n) performs scaling phases until
d < r;/3n3 Then, if f (U) > /3, at least one element € U satisfiesx(w) > n?s

at the end of the last scaling phase. By Lemma 4.1 (b), such an elenentot
contained in any minimizer of. Otherwise,f (Y) < —p/3 and atleast one element
w € Y satisfiesx(w) < —n?s at the end of the last scaling phase. By Lemma 4.1
(a), such an elememt is contained in every minimizer of.

The choice ofy in each call toFix is determined so that (i) Lemma 4.1 may
be invoked for a new elememt after O(logn) phases, and (ii) the number of
augmentations in the first phase is not too large. This is accomplished by setting
n as in (4.2). We explain why (i) holds below, and why (ii) holds in the proof of
Theorem 4.3

n = max f (R)) — f(R(u)\{u}) | ue U}. (4.2)
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Lemma 4.2 implies thag(v) < n for anyy € B(f) consistent withD.

If » < 0, then an extreme bagec B(f) consistent withD satisfiesy(u) < 0
for eachu € U. In this casey (U) = y(U) = f(U), which implies thatU
minimizes f by the weak duality in Lemma 2.1. Therefore, the algorithm returns
U as a minimizer off .

If » > 0, then letu be an element that attains the maximum in the right-hand
side of (4.2). Then, sincg = f(R)) — f(R(u)\{u}) = f(U) — f(R)\{u}) +
(Af(R(u)) —Af(U)) at least one of the three valueb(U), — f (R(u)\{u}), and
f(R(u)) — f(U), is greater than or equal t9'3. Hence, we consider the following
three cases:

If f(U)>n/3> 0,the algorithm applieBix(f, D, ») to find a new elemenw
that is not in any minimizer of . In this case, it suffices to minimize the function
f among those subsets that do not contain any verigith w € R(v). Thus, the
algorithm deletegv | w € R(v)} fromU.

If f(Ru)\{u})) <—-7n/3<0, the algorithm appliebix(f, D, n) to find a new
elementw in every minimizer off. In this case, every minimizer of includes
R(w). Thus, it suffices to minimize the submodular functl(m defined on the
smaller underlying sét) \ R(w) as in (4.1); so the algorithm sefs:= f,,.

Otherwise, (u(U\R(U)) = f(U) = f(R)) < —n/3 < 0), the algorithm
appliesFix(fy, Dy, n) whereDy, is defined ad restricted tdJ \ R(u). In this case,
Fix(fy, Dy, n) finds an element € U\ R(u) that is contained in every minimizer
of f,. Thus, the algorithm adds(w) to F. If this creates a cycle iD, then the arcs
of the cycle imply that either every element in the cycle is contained in a minimizer
of f, or every element in the cycle is not contained in any minimizer. Thus, the
algorithm contracts the cycle to a single vertex and modifiesxd f by regarding
the contracted vertex set as a single vertex.

This algorithm is summarized in Figure 3.

THEOREM 4.3. Algorithm SPM is a strongly polynomial algorithm that per-
forms Q(n’ logn) function evaluations and arithmetic operations.

PrROOF Each time we call the proceduré, the algorithm adds a new arcib
or deletes a set of vertices. This can happen at 19¢sf) times. Each call td-ix
takesO(logn) phases. By Lemma 3.4, each phase after the first phas® (md¥
augmentations.

To bound the number of augmentations in the first phase, recall that the choice
of n implies thaty(v) < n for any extreme basg € B(f) consistent withD. By
submodularlty off, any extreme basgee B(fu)conS|stentW|trD satisfieg/(t) <

fu(R() — T(ROWD) = T(R®) — F(RO\(L) < n for eacht € U\R{).

Thus, forFix(f, D, n) or Fix(f, Dy, n), we havey+(V) < npn. Since the number
of augmentations in(&phase is bounded by (U)/8, the number of augmentations
in the first phase of any call teix is bounded by.

Since the proof of Theorem 3.7 shows that the number of arithmetic operations
and function evaluations per augmentationdgn®), this yields anO(n’ logn)
bound on the total number of steps.

When applied to rational-valued submodular functid®®RM works in the space
of polynomial size. In particular, as noted earlier, the encoding length of the numbers
generated in the Gaussian elimination is bounded by a polynomial in the input size
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SPM(f):

Initialization:
X0 UV, fef Fe0
While U # 0 do ~
n — max{f(R(v)) - f(R(w)\{u}) | v € U}
Let v € U attain the maximum above.
If n <0 then
X — X UT(U)
Return X.
Else
If f(U) > n/3 then
w — Fix(f, D,n) [ w not in any minimizer. ]
Delete {v |w € R(v)} from U.
Else if f(R(u)\{u}) < —7/3 then
w « Fix(f, D,n) [ w in every minimizer. ]
e fu
X — X UT'(R(w))
Else
w «— Fix(fu, Du,n) [ w in every minimizer containing u. ]
If u € R(w) then
Contract {v | v € R(w), u € R(v)} to a single vertex.
Else F — FU {(u,w)}
Return X.
End.

Fic. 3. A strongly polynomial algorithm for submodular function minimization.

(including the maximum encoding length of the function values) [Edmonds 1967],
and so is the size of the resulting multipliersThus,SPM is a strongly polynomial
algorithm. [

5. Removing Gaussian Elimination

The algorithms described in Sections 3 and 4 both employ Gaussian elimination to
get a representation of as a convex combination of a small number of extreme
bases. This step is, however, not necessary to obtain the polynomiality. We explain
here the effect of removing this step.

The size of the sdt in the convex combination representatiorxaficreases by
at mostn — 1 per augmentation, due to Lemma 3.5. The number of augmentations
per scaling phase is not affected by the sizd ¢éee the proof of Lemma 3.4),
and hence remain®(n?). Thus, the total number of bases introduced during the
algorithm is bounded by times the number of augmentations. For the scaling
algorithmSFM( f) described in Section 3, this @(n®log M).

The size ofl does affect the work per augmentation, however. In particu-
lar, it affects the number of calls tDouble-Exchange during the search for
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an augmentation. In the proof of Lemma 3.6, it is explained that the number
of Double-Exchange operations before augmentation per extreme bask in

is at mostn?. Thus, the total work per augmentation in the algorithm without
Reduce is O(n®log M). Thus, the number of arithmetic operations and function
evaluations used by this more combinatorial versiorsBM(f) is bounded by
o(n’ log? M).

The strongly polynomial algorithn$PM( f) described in Section 4 does not
depend on reducing the size bfor strong polynomiality. If this step is omitted,
the number of extreme baseslimmay grow toO(n®logn) in an iteration ofFix.
Since each call t&ix starts with a single extreme base, the sizé @fill remain
bounded throughoBPM( f) by O(n3logn). This will increase the the work per
augmentation taO(n°logn). Thus, an overall bound on the number of steps is
o(n°log?n).

In contrast, if the linear algebraic step were omitted in the strongly polynomial
algorithm described in Schrijver [2000], the sizelotould become exponential
inn.

6. Conclusion

This paper has presented a strongly polynomial algorithm for minimizing submod-
ular functions defined on Boolean lattices: all subsets of the ground. sveral
related problems have been shown to require algorithms for minimizing submodu-
lar functions on restricted families of subsets [Goemans and Ramakrishnan 1995;
Grotschel et al. 1988]. These problems have combinatorial solutions modulo an or-
acle for submodular function minimization on distributive lattices. Our algorithms
can be extended to minimize submodular functions defined on distributive lattices.

Consider a submodular functioh D — R defined on a distributive lattic®
represented by a posetonV. Then, the associated base polyhedron is unbounded
in general.

An easy way to minimize such a functidnis to consider the reduction df by
a sufficiently large vector. As described in [Fujishige 1991, p. 56], we can com-
pute an upper-boun on | f(X)| amongX € D. Let f be the rank function of
the reduction by a vector with each component being equd tdhe submod-
ular function f is defined on 2 and the set of minimizers of coincides with
that of f. Thus, we may apply our algorithms. However, each evaluation of the
function value off requiresO(n?) elementary operations in addition to a single
call for the evaluation off . Schrijver [2000] describes a similar method to solve
this problem.

Alternatively, we can slightly extend the algorithmsin Sections 3 and 4 by keeping
the basex € B(f) as a convex combination of extreme bages plus a vector in
the characteristic cone of BJ. The latter can be represented as a boundary of a
nonnegative flow in the Hasse diagranffThis extension enables us to minimize
f in O(n® min{lognM, n?logn}) time, whereM is an upper bound ohf (X)|
amongX € D.

Submodular functions defined on modular lattices naturally arise in linear alge-
bra. Minimization of such functions has a significant application to canonical forms
of partitioned matrices [Ito et al. 1994; lwata and Murota 1995]. It remains an inter-
esting open problem to develop an efficient algorithm for minimizing submodular
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functions on modular lattices, even for those specific functions that arise from
partitioned matrices.
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